Engineering two-dimensional material heterostructures by combining the best of different materials in one ultimate unit can offer a plethora of opportunities in condensed matter physics. Here, in the van der Waals heterostructures of the ferromagnetic insulator Cr2Ge2Te6 and graphene, our observations indicate an out-of-plane proximity-induced ferromagnetic exchange interaction in graphene. The perpendicular magnetic anisotropy of Cr2Ge2Te6 results in significant modification of the spin transport and precession in graphene, which can be ascribed to the proximity-induced exchange interaction. Furthermore, the observation of a larger lifetime for perpendicular spins in comparison to the in-plane counterpart suggests the creation of a proximity-induced anisotropic spin texture in graphene. Our experimental results and density functional theory calculations open up opportunities for the realization of proximity-induced magnetic interactions and spin filters in 2D material heterostructures and can form the basic building blocks for future spintronic and topological quantum devices.
Discovery of topological Weyl semimetals has revealed the opportunities to realize several extraordinary physical phenomena in condensed matter physics. Specifically, these semimetals with strong spin-orbit coupling, broken inversion symmetry and novel spin texture are predicted to exhibit a large spin Hall effect that can efficiently convert the charge current to a spin current. Here we report the direct experimental observation of a large spin Hall and inverse spin Hall effects in Weyl semimetal WTe2 at room temperature obeying Onsager reciprocity relation. We demonstrate the detection of the pure spin current generated by spin Hall phenomenon in WTe2 by making van der Waals heterostructures with graphene, taking advantage of its long spin coherence length and spin transmission at the heterostructure interface. These experimental findings well supported by ab initio calculations show a large charge-spin conversion efficiency in WTe2; which can pave the way for utilization of spin-orbit induced phenomena in spintronic memory and logic circuit architectures. Figure S1. Devices with WTe2-graphene heterostructure. (a) Optical micrograph of Device 1, with WTe2graphene heterostructure and ferromagnetic (TiO2 1 nm/Co 60 nm) contacts on graphene for detection and creation of (I)SHE in WTe2. The scale bar is 2 μm. (b) Atomic force microscope (AFM) picture of the heterostructure area (red mark in (a)). The inset is the thickness profile of WTe2 on few-layer graphene along the white dash line showing the WTe2 thickness is 27nm in Device 1. (c) AFM picture and thickness profile of Dev 3 (after the device burnout) showing WTe2 thickness to be 11 nm on monolayer CVD graphene.
Unique electronic spin textures in topological states of matter are promising for emerging spin-orbit driven memory and logic technologies. However, there are several challenges related to the enhancement of their performance, electrical gate-tunability, interference from trivial bulk states, and heterostructure interfaces. We address these challenges by integrating two-dimensional graphene with a three-dimensional topological insulator (TI) in van der Waals heterostructures to take advantage of their remarkable spintronic properties and engineer proximity-induced spin-charge conversion phenomena. In these heterostructures, we experimentally demonstrate a gate-tunable spin-galvanic effect (SGE) at room temperature, allowing for efficient conversion of a non-equilibrium spin polarization into a transverse charge current. Systematic measurements of SGE in various device geometries via a spin switch, spin precession, and magnetization rotation experiments establish the robustness of spin-charge conversion in the Gr-TI heterostructures. Importantly, using a gate voltage, we reveal a strong electric field tunability of both amplitude and sign of the spingalvanic signal. These findings provide an efficient route for realizing all-electrical and gatetunable spin-orbit technology using TIs and graphene in heterostructures, which can enhance the performance and reduce power dissipation in spintronic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.