Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O3 [PZT] ceramics. The origin of the donor‐dopant effects is not entirely clear. (Pb,Ba)ZrO3 [PBZ] is a related ferroelectric material, its perovskite A‐site being partially occupied by the larger Ba+2 cation, less prone to evaporation than Pb+2, and the B‐site is occupied entirely by the valency‐stable Zr+4. Here we report on our studies of Nb+5 doping effects in (Pb,Ba)ZrO3. Similarly, to past observations on La+3 and Nb+5 doped PZT, we find a strong reduction in relative density of PBZ when the doping is <0.5 atomic %. This is accompanied by lattice parameter reduction, enhanced PbO loss, smaller grain size and deterioration of dielectric, piezoelectric and polarization switching properties, the latter being opposite of expected softening effect. All those observations can be interpreted in terms of the Nb entering A‐site at small concentrations. This is supported by ab‐inito calculations and analysis of the possible defect reaction equations. The structure and microstructure of PBZ with Nb>0.2% are consistent with Nb+5 entering the B‐site and softening effects are observed. The study supports the scenario of hardening due to domain walls pinning by VPb‐VO divacancies and softening upon decrease in their concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.