With increasing demand of infrastructure to support power transmission and telecommunication systems, the need of erecting more towers has also been rising significantly. For many years, these towers were designed by using a conservative approach and the opportunities lying in the design optimisation of the towers were not leveraged. This paper presents the application of structural topology optimisation to lattice self-supported telecommunication towers in developing an improved solution in terms of weight-to-stiffness ratio. 2D and 3D topology optimisation studies were performed with highly optimised bracing systems reducing the amount of steel material used, thus its carbon footprint. The new exoskeleton structure is representing a lattice tower composed of 'high-waisted' bracing type and elliptical hollow sections (EHS). Comparative modal analyses demonstrated the structural performance of the optimised tower models. In addition, a research-led design was carried out for optimising the geometric cross-sectional properties of the optimised lattice tower subjected to quasi-static analysis followed by regression analysis. The cross-sectional parameters were progressively changed; explicitly the diameter and thickness of the members. The performance-based analysis and design of a topologically optimised lattice tower present alternatives to onerous approaches such as wind tunnel testing or finite element modelling. The results were further analysed to understand their viability in different loading design cases and the effect of cross-sections. Conclusions highlighted the benefits gained by introducing the structural topology optimisation process in the design of slender support structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.