The response of polycrystals to plastic deformation is studied at the level of variations within individual grains, and comparisons are made to theoretical calculations using crystal plasticity (CP). We provide a brief overview of CP and a review of the literature, which is dominated by surface observations. The motivating question asks how well CP represents the mesoscale behavior of large populations of dislocations (as carriers of plastic strain). The literature shows consistently that only moderate agreement is found between experiment and calculation. We supplement this with a current example of microstructure evolution in the interior of a copper sample subjected to tensile deformation. Nondestructive measurements of orientation fields were performed using the near-field highenergy X-ray diffraction microscopy (nf-HEDM) technique at the Advanced Photon Source (APS). Starting at highly ordered grains, a single two-dimensional slice of microstructure containing ∼150 grains was followed through multiple strain states, where it tracked lattice rotations and defect accumulation of up to 14% elongation. In accord with the literature, at the scale of individual grains, comparison of observations with CP models indicates reasonable qualitative agreement but significant variations between simulation and experiment are apparent. The conclusion is that in order to be able to quantify the effects of microstructure on the distributions of slip, orientation change, and damage accumulation, the empirically derived constitutive relations used in continuumscale simulations need to be improved. Equally important will be the development of large-scale simulations of polycrystals that directly model dislocations.
317Annu. Rev. Condens. Matter Phys. 2014.5:317-346. Downloaded from www.annualreviews.org by University of Texas -San Antonio on 08/26/14. For personal use only.
The study of microstructure and its relation to properties and performance is the defining concept in the field of materials science and engineering. Despite the paramount importance of microstructure to the field, a rigorous systematic framework for the quantitative comparison of microstructures from different material classes has yet to be adopted. In this paper, the authors develop and present a novel microstructure quantification framework that facilitates the visualization of complex microstructure relationships, both within a material class and across multiple material classes. This framework, based on the stochastic process representation of microstructure, serves as a natural environment for developing relational statistical analyses, for establishing quantitative microstructure descriptors. In addition, it will be shown that this new framework can be used to link microstructure visualizations with properties to develop reduced-order microstructure-property linkages and performance models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.