We study the problem of allocating indivisible goods among agents in a fair manner. While envy-free allocations of indivisible goods are not guaranteed to exist, envy-freeness can be achieved by additionally providing some subsidy to the agents. These subsidies can be alternatively viewed as a divisible good (money) that is fractionally assigned among the agents to realize an envy-free outcome. In this setup, we bound the subsidy required to attain envy-freeness among agents with dichotomous valuations, i.e., among agents whose marginal value for any good is either zero or one. We prove that, under dichotomous valuations, there exists an allocation that achieves envy-freeness with a per-agent subsidy of either 0 or 1. Furthermore, such an envy-free solution can be computed efficiently in the standard value-oracle model. Notably, our results hold for general dichotomous valuations and, in particular, do not require the (dichotomous) valuations to be additive, submodular, or even subadditive. Also, our subsidy bounds are tight and provide a linear (in the number of agents) factor improvement over the bounds known for general monotone valuations.
We study coverage problems in which, for a set of agents and a given threshold T , the goal is to select T subsets (of the agents) that, while satisfying combinatorial constraints, achieve fair and efficient coverage among the agents. In this setting, the valuation of each agent is equated to the number of selected subsets that contain it, plus one. The current work utilizes the Nash social welfare function to quantify the extent of fairness and collective efficiency. We develop a polynomial-time (18 + o(1))-approximation algorithm for maximizing Nash social welfare in coverage instances. Our algorithm applies to all instances wherein, for the underlying combinatorial constraints, there exists an FPTAS for weight maximization. We complement the algorithmic result by proving that Nash social welfare maximization is APX-hard in coverage instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.