We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating definably compact groups G in saturated o-minimal structures to compact Lie groups. We also prove some other structural results about such G, for example the existence of a left invariant finitely additive probability measure on definable subsets of G. We finally introduce a new notion "compact domination" (domination of a definable set by a compact space) and raise some new conjectures in the o-minimal case.
Abstract. We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of NIP (not the independence property), continuing aspects of the paper [16]. Among key results are (i) if p = tp(b/A) does not fork over A then the Lascar strong type of b over A coincides with the compact strong type of b over A and any global nonforking extension of p is Borel definable over bdd(A), (ii) analogous statements for Keisler measures and definable groups, including the fact that G 000 = G 00 for G definably amenable, (iii) definitions, characterizations and properties of "generically stable" types and groups, (iv) uniqueness of invariant (under the group action) Keisler measures on groups with finitely satisfiable generics, (v) a proof of the compact domination conjecture for (definably compact) commutative groups in o-minimal expansions of real closed fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.