<p>State-of-the-art identification of the functional groups present in an unknown chemical entity requires expertise of a skilled spectroscopist to analyse and interpret Fourier Transform Infra-Red (FTIR), Mass Spectroscopy (MS) and/or Nuclear Magnetic Resonance (NMR) data. This process can be time-consuming and error-prone, especially for complex chemical entities that poorly characterized in the literature, or inefficient to use with synthetic robots producing molecules at an accelerated rate. Herein, we introduce a fast, multi-label deep neural network for accurately identifying all the functional groups of unknown compounds using a combination of FTIR and MS spectra. We do not use any database, pre-established rules, procedures, or peak-matching methods. Our trained neural network reveals patterns typically used by human chemists to identify standard groups. Finally, we experimentally validated our neural network, trained on single compounds, to predict functional groups in compound mixtures. Our methodology showcases practical utility for future use in autonomous analytical detection.</p>
<p>State-of-the-art identification of the functional groups present in an unknown chemical entity requires expertise of a skilled spectroscopist to analyse and interpret Fourier Transform Infra-Red (FTIR), Mass Spectroscopy (MS) and/or Nuclear Magnetic Resonance (NMR) data. This process can be time-consuming and error-prone, especially for complex chemical entities that poorly characterized in the literature, or inefficient to use with synthetic robots producing molecules at an accelerated rate. Herein, we introduce a fast, multi-label deep neural network for accurately identifying all the functional groups of unknown compounds using a combination of FTIR and MS spectra. We do not use any database, pre-established rules, procedures, or peak-matching methods. Our trained neural network reveals patterns typically used by human chemists to identify standard groups. Finally, we experimentally validated our neural network, trained on single compounds, to predict functional groups in compound mixtures. Our methodology showcases practical utility for future use in autonomous analytical detection.</p>
We present a deep learning method for identifying all the functional groups of unknown compounds using a combination of FTIR and MS spectra without the use of any database, pre-established rules, procedures, or peak-matching methods. We derive patterns and correlations directly from spectral data representing multiple functional groups as a multi-class, multi-label problem. For practical usability, we introduce two new metrics (Molecular F1 score and Molecular Perfection rate) to measure the performance by identifying all functional groups on molecules. Our optimized model has a Molecular F1 score of 0.92 and a Molecular Perfection rate of 72%. Backpropagation of our model reveals IR patterns typically used by human chemists suggesting “learning” of known spectral features. We show that the introduction of new functional groups does not decrease model performance. Finally, we show redundancy in FTIR and MS data by encoding combined data in a latent space that retains the accuracy of the original model. Our results reveal the importance of deep learning for rapid identification of functional groups to realize autonomous analytical processes in the future. <br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.