The relative positions that genes occupy on their respective chromosomes can play a critical role in determining how they are regulated at the transcriptional level. For example, a significant fraction of the genes from a variety of coregulated gene sets, including the ribosomal protein (RP) and the rRNA and ribosome biogenesis (RRB) regulons, exist as immediate, adjacent gene pairs. These gene pairs occur in all possible divergent, tandem, and convergent orientations. Adjacent-gene pairing in these regulons is associated with a tighter transcriptional coregulation than is observed for nonpaired genes of the same regulons. In order to define the cis and trans factors that regulate adjacent-gene coregulation (AGC), we conducted a mutational analysis of the convergently oriented RRB gene pair MPP10-YJR003C. We observed that coupled corepression of the gene pair under heat shock was abrogated when the two genes were separated by an actively expressed RNA polymerase (Pol) II transcription unit (the LEU2 gene) but not when the inserted LEU2 gene was repressed. In contrast, the insertion of an RNA Pol III-transcribed tRNA (Thr) gene did not disrupt the coregulated repression of MPP10 and YJR003C. A targeted screen of mutants defective in regulating chromosome architecture revealed that the Spt20, Snf2, and Chd1 proteins were required for coupling the repression of YJR003C to that of MPP10. Nucleosome occupancy assays performed across the MPP10 and YJR003C promoter regions revealed that the mechanism of corepression of the gene pair was not related to the repositioning of nucleosomes across the respective gene promoters.
Since its discovery in 2001, human metapneumovirus (hMPV) has been identified as an important cause of respiratory tract infection in young children, second only to the closely related respiratory syncytial virus (RSV). Clinical evidence suggests that hMPV is associated with acute exacerbations of asthma in both children and adults, and may play a role in initiating asthma development in children. Animal models have demonstrated that airway hyperresponsiveness (AHR) and inflammation are triggered following hMPV infection, and hMPV is able to persist by inhibiting innate immune responses and causing aberrant adaptive responses. In this review, we discuss the prevalence of hMPV infection in pediatric and adult populations and its potential role in asthma exacerbation. We also review recent advances made in animal models to determine immune responses following hMPV infection, and compare to what is known about RSV.
Hand hygiene is a critical public health issue associated with disease transmission worldwide. Here, a nanotechnology-based approach has been employed to enhance hand hygiene using engineered water nanostructures (EWNS) synthesized by electrospray and ionization of antimicrobial aqueous solutions. The EWNS possess unique properties: have a tunable size in the nanoscale, are electrically charged, which results in a lifespan of hours in room conditions, and can carry both antimicrobial agents and reactive oxygen species (ROS) from ionization of water. More importantly, EWNS are highly mobile, can be directed toward a surface of interest utilizing their electric charge, and can inactivate pathogens by delivering active ingredients (AIs) and ROS. In this study, a variety of AIs commonly used for hand sanitization and food safety, such as hydrogen peroxide, citric acid, lysozyme, and nisin, were utilized to synthesize various EWNS-based nanosanitizers and inactivate hand hygiene-related pathogens. A 0.5 min exposure to various EWNS-based nanosanitizers reduced Escherichia coli, Staphylococcus aureus, and bacteriophage MS2 by ∼3, 1, and 2 log, respectively. More importantly, such an aerosol-based nanocarrier platform, because of its targeted delivery manner, utilizes only nanograms of "nature-inspired" antimicrobials and leaves behind no chemical byproducts, making it an efficient approach for hand sanitization.
Here, we report a novel, “dry”, nano-aerosol-based, antimicrobial technology using engineered water nanostructures (EWNS) for leafy vegetable disinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.