The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders.
Pyridoxine (vitamin B6) intoxicated rodents develop a peripheral neuropathy characterized by sensory nerve conduction deficits associated with disturbances of nerve fiber geometry and axonal atrophy. To investigate the possibility that glucagon-like peptide-1 (7-36)-amide (GLP-1) receptor agonism may influence axonal structure and function through neuroprotection neurotrophic support, effects of GLP-1 and its long acting analog, Exendin-4 (Ex4) treatment on pyridoxine-induced peripheral neuropathy were examined in rats using behavioral and morphometric techniques. GLP-1 is an endogenous insulinotropic peptide secreted from the gut in response to the presence of food. GLP-1 receptors (GLP-1R) are coupled to the cAMP second messenger pathway, and are expressed widely throughout neural tissues of humans and rodents. Recent studies have established that GLP-1 and Ex4, have multiple synergistic effects on glucose-dependent insulin secretion pathways of pancreatic β-cells and on neural plasticity. Data reported here suggest that clinically relevant doses of GLP-1 and Ex4 may offer some protection against the sensory peripheral neuropathy induced by pyridoxine. Our findings suggest a potential role for these peptides in the treatment of neuropathies, including that associated with type II diabetes mellitus.
The blood-nerve barrier (BNB) defines the physiological space within which the axons, Schwann cells, and other associated cells of a peripheral nerve function. The BNB consists of the endoneurial microvessels within the nerve fascicle and the investing perineurium. The restricted permeability of these two barriers protects the endoneurial microenvironment from drastic concentration changes in the vascular and other extracellular spaces. It is postulated that endoneurial homeostatic mechanisms regulate the milieu intérieur of peripheral axons and associated Schwann cells. These mechanisms are discussed in relation to nerve development, Wallerian degeneration and nerve regeneration, and lead neuropathy. Finally, the putative factors responsible for the cellular and molecular control of BNB permeability are discussed. Given the dynamic nature of the regulation of the permeability of the perineurium and endoneurial capillaries, it is suggested that the term blood-nerve interface (BNI) better reflects the functional significance of these structures in the maintenance of homeostasis within the endoneurial microenvironment.
Excess ingestion of pyridoxine (vitamin B6) causes a severe sensory neuropathy in humans. The mechanism of action has not been fully elucidated, and studies of pyridoxine neuropathy in experimental animals have yielded disparate results. Pyridoxine intoxication appears to produce a neuropathy characterized by necrosis of dorsal root ganglion (DRG) sensory neurons and degeneration of peripheral and central sensory projections, with large diameter neurons being particularly affected. The major determinants affecting the severity of the pyridoxine neuropathy appear to be duration and dose of pyridoxine administration, differential neuronal vulnerability, and species susceptibility. The present study used design-based stereological techniques in conjunction with electrophysiological measures to quantify the morphological and physiological changes that occur in the DRG and the distal myelinated axons of the sciatic nerve following pyridoxine intoxication. This combined stereological and electrophysiological method demonstrates a general approach that could be used for assessing the correlation between pathophysiological and functional parameters in animal models of toxic neuropathy.
The AC impedance of the isolated perineurium of the frog sciatic nerve was examined at frequencies from 2 Hz to 100 kHz. A Nyquist plot of the imaginary and real components of the impedance demonstrated more than 1 capacitative element, and a DC resistance of 478 +/- 34 (SEM, n = 27) omega cm2. Transperineurial potential in the absence of externally applied current was 0.0 +/- 0.5 mV. The impedance data were fitted by nonlinear least squares to an equation representing the generalized impedance of four equivalent circuits each with two resistive and two capacitative elements. Only two of these circuits were consistent with perineurial morphology, however. In both, the perineurial cells were represented by a resistive and capacitative element in parallel, where capacitance was less than 0.1 microF/cm2. The extracellular matrix and intercellular junctions of the perineurium were represented as single resistive and capacitative elements in parallel or in series, where capacitance exceeded 2 microF/cm2. Immersion of the perineurium in low conductance Ringer's solution increased DC resistive elements as compared with their values in isotonic Ringer's solution, whereas treatment for 10 min with a hypertonic Ringer's solution (containing an additional 1.0 or 2.0 mol NaCl/liter of solution) reduced DC resistive elements, consistent with changes in perineurial permeability. The results indicate that (a) perineurial impedance contains two time constants and can be analyzed in terms of contributions from cellular and extracellular elements, and (b) transperineurial DC resistance, which is intermediate between DC resistance for leaky and nonleaky epithelia, represents intercellular resistance and can be experimentally modified by hypertonicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.