The International Statistical Classification of Disease and Related Health Problems (ICD) is an international standard system for categorizing and reporting diseases, injuries, disorders, and health conditions. Most previously-proposed disease predicting systems need clinical information collected by the medical staff from the patients in hospitals. In this paper, we propose a deep learning algorithm to classify disease types and identify diagnostic codes by using only the subjective component of progress notes in medical records. In this study, we have a dataset, consisting of about one hundred and sixty-eight thousand medical records, from a medical center, collected during 2003 and 2017. First, we apply standard text processing procedures to parse the sentences and word embedding techniques for vector representations. Next, we build a convolution neural network model on the medical records to predict the ICD-9 code by using a subjective component of the progress note. The prediction performance is evaluated by ten-fold cross-validation and yields an accuracy of 0.409, recall of 0.409 and precision of 0.436. If we only consider the “chapter match” of ICD-9 code, our model achieves an accuracy of 0.580, recall of 0.580, and precision of 0.582. Since our diagnostic code prediction model is solely based on subjective components (mainly, patients’ self-report descriptions), the proposed approach could serve as a remote and self-diagnosis assistance tool, prior to seeking medical advice or going to the hospital. In addition, our work may be used as a primary evaluation tool for discomfort in the rural area where medical resources are restricted.
Effectively handling the limited number of surgery operating rooms equipped with expensive equipment is a challenging task for hospital management such as reducing the case-time duration and reducing idle time. Improving the efficiency of operating room usage via reducing the idle time with better scheduling would rely on accurate estimation of surgery duration. Our model can achieve a good prediction result on surgery duration with a dozen of features. We have found the result of our best performing department-specific XGBoost model with the values 31.6 min, 18.71 min, 0.71, 28% and 27% for the metrics of root-mean-square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), mean absolute percentage error (MAPE) and proportion of estimated result within 10% variation, respectively. We have presented each department-specific result with our estimated results between 5 and 10 min deviation would be more informative to the users in the real application. Our study shows comparable performance with previous studies, and the machine learning methods use fewer features that are better suited for universal usability.
The International Classification of Diseases (ICD) is a globally recognized medical classification system that aids in the identification of diseases and the regulation of health trends. The ICD framework makes it easy to keep track of records and evaluate medical data for evidence-based decision-making. Several methods have predicted ICD-9 codes based on the discharge summary, clinical notes, and nursing notes. In our study, our approach only utilizes the subjective component to predict ICD-9 codes. Data cleaning and segmentation, and Natural Language Processing (NLP) techniques are applied on the subjective component during the pre-processing. Our study builds the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU) to develop a model for predicting ICD-9 codes. The ICD-9 codes contain different ICD levels such as chapter, block, three-digit code, and full code. The GRU model scores the highest recall of 57.91% in the chapter level and the top-10 experiment has a recall of 67.37%. Based on the subjective component, the model can help patients in the form of a remote assistance tool.
Agriculture is an important resource for the global economy, while plant disease causes devastating yield loss. To control plant disease, every country around the world spends trillions of dollars on disease management. Some of the recent solutions are based on the utilization of computer vision techniques in plant science which helps to monitor crop industries such as tomato, maize, grape, citrus, potato and cassava, and other crops. The attention-based CNN network has become effective in plant disease prediction. However, existing approaches are less precise in detecting minute-scale disease in the leaves. Our proposed Channel–Spatial segmentation network will help to determine the disease in the leaf, and it consists of two main stages: (a) channel attention discriminates diseased and healthy parts as well as channel-focused features, and (b) spatial attention consumes channel-focused features and highlights the diseased part for the final prediction process. This investigation forms a channel and spatial attention in a sequential way to identify diseased and healthy leaves. Finally, identified leaf diseases are divided into Mild, Medium, Severe, and Healthy. Our model successfully predicts the diseased leaves with the highest accuracy of 99.76%. Our research study shows evaluation metrics, comparison studies, and expert analysis to comprehend the network performance. This concludes that the Channel–Spatial segmentation network can be used effectively to diagnose different disease degrees based on a combination of image processing and statistical calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.