This research accentuates to explore designing the drone frame using Generative design tools. A quadcopter is designed using Autodesk generative design embedded in Fusion 360. The simulation results such as static stress-strain, modal frequency and displacement results of additive manufactured quadcopter are compared with a DJI flame wheel F450 drone frame. The generative designed frame has minimum displacement compared to traditional designed drone frame. It is observed that generative designing technique along with additive manufactured frames yields better frames with improved resistance to fracture and minimum displacement compared to traditional designed DJI flame wheel F450 drone frame.
Energy conservation is one of the most important aspects of electrical discharge machining process in which the material removal is by means of spark erosion. Metal removal in wire electrical discharge turning is a complex erosion mechanism which involves melting, vaporization and rapid cooling of molten material. In this work, the significance of discharge energy on the performance of wire electrical discharge turning process, namely, material removal rate, surface finish, thickness of recast layer and surface crack, is analyzed. New model to estimate material removal rate and surface finish in wire electrical discharge turning process have been proposed. Erosion energy and kinetic energy imparted by electrons and average physio-thermal properties of work material are utilized for the modeling. Proposed models are validated by conducting experiments on AISI 4340 steel material. The results obtained from the model are well in agreement with the experimental values. The influence of discharge energy on surface crack and recast layer thickness is analyzed using scanning electron microscope micrographs and energy-dispersive x-ray spectroscopy analysis. Surface crack is observed at higher discharge energy. The thickness of recast layer increases with the increase in discharge energy. Three-dimensional surface topography reveals the turbulent nature of machining process resulted from transient erosion phenomena of wire electrical discharge turning process. Higher material removal rates of the order of about 0.06 g/min with consistent average roughness in the range of 4.5–5.5 µm at the expense of 1.6–2.6 J of discharge energy are achieved in this work. The proposed models can be utilized for machining of difficult to machine material by effective utilization of energy that leads to energy conservation in wire electrical discharge turning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.