PCBs are industrial chemicals that continue to contaminate our environment. They cause various toxic effects in animals and in exposed human populations. The mechanisms of toxicity, however, are not completely understood. PCBs are metabolized by cytochromes P450 to mono- and dihydroxylated compounds. Dihydroxy-PCBs can potentially be oxidized to the corresponding quinones. We hypothesized that reactive oxygen species (ROS) are produced by redox reactions of PCB metabolites. We tested several synthetic dihydroxy- and quinoid-PCBs with 1-3 chlorines for their potential to produce ROS in vitro and in HL-60 human leukemia cells, and DNA strand breaks in vitro. All dihydroxy-PCBs tested produced superoxide. The quinones generated superoxide only in the presence of GSH, probably during the autoxidation of the glutathione conjugates. We observed increased superoxide production with decreasing halogenation. Incubation of dihydroxy-PCBs or PCB quinones + GSH with plasmid DNA resulted in DNA strand break induction in the presence of Cu(II). Tests with various ROS scavengers indicated that hydroxyl radicals and singlet oxygen are likely involved in this strand break induction. Finally, dihydroxy- and quinoid PCBs also produced ROS in HL-60 cells in a dose- and time-dependent manner. We conclude that dihydroxylated PCBs, and PCB quinones after reaction with GSH, produce superoxide and other ROS both in vitro and in HL-60 cells, and oxidative DNA damage in the form of DNA strand breaks in vitro. The reactions seen in vitro and in cells may well be a predictor of the toxicity of PCBs in animals.
Polychlorinated biphenyls (PCBs) are highly persistent contaminants in our environment. Their persistence is due to a general resistance to metabolic attack. Lower halogenated PCBs, however, are metabolized to mono- and dihydroxy compounds, and the latter may be further oxidized to quinones with the formation of reactive oxygen species (ROS). We have shown that PCB metabolism generates ROS in vitro and in cells in culture and this leads to oxidative DNA damage, like DNA strand breaks and 8-oxo-dG formation. In the present study, we have evaluated the reactivity of PCB metabolites with other nucleophiles, like glutathione (GSH), by assessing (1) quantitative GSH binding in vitro, (2) GSH and thiol (sulfhydryl) depletion in HL-60 cells, (3) the associated cytotoxicity, and (4) the inhibition of topoisomerase II activity in vitro. PCB quinones were found to bind GSH in vitro at a ratio of 1:1.5 and to deplete GSH in HL-60 cells as measured by both spectrophotometric and spectrofluorometric methods. By flow cytometry analysis, we confirmed that there was intracellular GSH depletion in HL-60 cells by PCB quinones and this is associated with cytotoxicity. On the other hand, the PCB hydroquinone metabolites did not bind GSH or other thiols within 1 h of exposure. However, by spectral analyses we found that the PCB hydroquinones could be oxidized enzymatically to the quinones, which could then bind GSH. The resulting hydroquinone-glutathione addition product(s) could undergo a second and third cycle of oxidation and GSH addition with the formation of di- and tri-GSH-PCB adducts. The effect of the PCB metabolites was also tested on a sulfhydryl-containing enzyme, topoisomerase II. PCB quinones inhibited topoisomerase II activity while the PCB hydroquinone metabolites did not. Hence, the oxidation of PCB hydroquinone metabolites to quinones in cells followed by the binding of quinones to GSH and to protein sulfhydryl groups and the resulting oxidative stress may be important aspects of the toxicity of these compounds.
MnI-Complex electronic tuneability through remote interactions. Introducing 2-pyridone based ligands as redox tuner in molecular electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.