This review emphasizes the importance of novel biopreservation strategies and their application to ensure seafood quality and safety especially within the context of increasing demand for minimally processed aquatic food products. The paper addresses the major hazards linked to spoilage and pathogenic bacteria found in fresh and processed aquatic foods, mainly ready-to-eat seafood subjected to short-term storage, and the biological strategies that can be used to minimize their growth. This is followed by an overview of current knowledge about the inhibiting bacteriocin-producing lactic acid bacteria isolated from aquatic food products or that is being evaluated for ensuring safety on seafood and seafood products as well as the characteristics of their bacteriocins. The different strategies for the biopreservation of aquatic food products, such as protective cultures or spray drying, and their current and future applications for the preservation of seafood products are also explored. Finally, novel antimicrobial active and intelligent packaging strategies based on antimicrobials film allowing controlled release of bacteriocins to refrigerated aquatic food products are also discussed.
Mead is a traditional alcoholic drink derived from the fermentation of diluted honey in the presence of appropriate yeast. Its modern production, in general terms, involves the addition of nutrients to initial diluted honey, pasteurization, yeast inoculation, fermentation and removal of impurities. Undesirable events along the process have been reported; among them, we highlight: delayed or arrested fermentations, modified and unpleasant sensory and quality parameters of the final product. These problems have been linked to the inability of yeasts to accomplish their role in extreme growth conditions. Emphasis has also been placed on the long fermentation times required, ranging from weeks to months, particularly when traditional procedures are applied and when the honey concentration is low. A series of alterations to the must and technological changes have been proposed in order to optimize the mead production process. In this context, this review examines the evidence that aims to improve meads' quality and make the production process easier and more efficient, by clarifying the source of unexpected events,
OPEN ACCESSMolecules 2014, 19 12578 describing the implementation of different fermentative microorganisms and using new methodologies.
Transglutaminases are a family of enzymes (EC 2.3.2.13), widely distributed in various organs, tissues, and body fluids, that catalyze the formation of a covalent bond between a free amine group and the γ-carboxamide group of protein or peptide-bound glutamine. Besides forming these bonds, that exhibit high resistance to proteolytic degradation, transglutaminases also form extensively cross-linked, generally insoluble, protein biopolymers that are indispensable for the organism to create barriers and stable structures. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have also been explored, but in a much lesser extent. Our group has identified a transglutaminase in the oomycete Phytophthora cinnamomi, which is able to induct defense responses and disease-like symptoms. In this mini-review, we report the achievements in this area in order to illustrate the importance and the versatility of transglutaminases.
Although seafood species identification has traditionally relied on morphological analysis, sometimes this is difficult to apply for the differentiation among penaeid shrimps owing to their phenotypic similarities and to the frequent removal of external carapace during processing. The objective of this review is to provide an updated and extensive overview on the molecular methods for shrimp and prawn species authentication, in which several omics approaches based on protein and DNA analysis are described. DNA-based methods include the amplification by PCR of different genes, commonly the mitochondrial 16S ribosomal RNA and cytochrome oxidase I genes. A recently described method based on RFLP coupled to PCR turned out to be particularly interesting for species differentiation and origin identification. Protein analysis methods for the characterization and detection of species-specific peptides are also summarized, emphasizing some novel proteomics-based approaches, such as phyloproteomics, peptide fragmentation, and species-specific peptide detection by HPLC coupled to multiple reaction monitoring (MRM) MS, the latter representing the fastest method described to date for species authentication in food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.