We have developed an IT governance disclosure framework to examine how firms communicate their IT governance activities. Using this framework for a sample of 200 commercial banking firms, our empirical assessment indicates that differences in the level of disclosure are systematically related to differences in institutional settings. We also find that firms with relatively good corporate governance practices consider IT performance measurement matters to be highly important when informing and communicating with shareholders.
The advancement in the field of material science has gifted us new electrically conductive materials having good mechanical properties and thermal characteristics. Machining these materials using conventional machining process is a challenging task. Electrical discharge machining (EDM) is a well-established machining process used to manufacture process hard materials having geometrically complex shapes, that are extremely difficult to machine traditionally. EDM is a thermo-electric process in which material is eroded by rapidly recurring sparks between the non-contacted electrode and workpiece. As there is no direct contact between the electrodes in EDM, machining defects like mechanical stresses, clattering & vibration do not create problems during machining. In spite of the advantages of the process, its use in industry is limited owing to poor surface finish and low volumetric material removal. To overcome these drawbacks, the metallic powder is mixed in the dielectric fluid, which increases its conductive strength and increases the spark gap distance between the tool and workpiece. This new evolved material removal process is called Powder Mixed Electrical Discharge Machining (PMEDM). The added powder significantly affects the performance of the EDM process. The objective of this review is to benefit the researchers to understand the PMEDM concept precisely and study the process parameters furthermore in particulars to get enhancements in the process to achieve better quality levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.