We report a DNA-gold nanoparticle (DNA-GNP) based lateral flow nucleic acid biosensor for visual detection of microRNA (miRNA)-215 in aqueous solutions and biological samples with low-cost and short analysis time. Sandwich-type hybridization reactions among GNP-labeled DNA probe, miRNA-215 and biotin-modified DNA probes were performed on the lateral flow device. The accumulation of GNPs on the test zone of the biosensor enables the visual detection of miRNA-215. After systematic optimization, the biosensor was able to detect a minimum concentration of 60 pM miRNA-215. The biosensor was applied to detect miRNA-215 from A549 cell lysate directly without complex sample treatment, and the detection limit of 0.148 million cells was obtained. This study provides a simple, rapid, specific and low-cost approach for miRNA detection in aqueous solutions and biological samples, showing great promise for clinical application and biomedical diagnosis in some malignant diseases.
We report a simple, fast, and sensitive approach for visual detection of single-nucleotide polymorphism (SNP) based on hairpin oligonucleotide-functionalized gold nanoparticle (HO-Au-NP) and lateral flow strip biosensor (LFSB). The results presented here expand on prior work ( Mao , X. , Xu , H. , Zeng , Q. , Zeng , L. , and Liu , G. Chem. Commun. 2009 , 3065-3067 .) by providing new approach to prepare HO-Au-NP conjugates with a deoxyadenosine triphosphate (dATP) blocker, which shortens the preparation time of the conjugates from 50 to 8 h and lowers the detection limit 500 times. A hairpin oligonucleotide modified with a thiol at the 5'-end and a biotin at the 3'-end was conjugated with Au-NP through a self-assembling process. Following a blocking step with dATP, the hairpin structure of HO and dATP embed the biotin groups, and make the biotin groups in close proximity to the Au-NP surface, leading to the biotins being "inactive". The strategy of detecting SNP depends on the unique molecular recognition properties of HO to the perfect-matched DNA and single-base-mismatched DNA to generate different quantities of "active" biotin groups on the Au-NP surface. After hybridization reactions, the Au-NPs associated with the activated biotins are captured on the test zone of LFSB via the specific reaction between the activated biotin and preimmobilized streptavidin. Accumulation of Au-NPs produces the characteristic red bands, enabling visual detection of SNP. The preparations of HO-Au-NP conjugates with dATP and the parameters of assay were optimized systematically, and the abilities of detecting SNP were examined in details. The current approach is capable of discriminating as low as 10 pM of perfect-matched DNA and single-base-mismatched DNA within 25 min without instrumentation. Moreover, the approach provides a lower background and higher selectivity compared to the current molecular beacon-based SNP detection. The protocol should facilitate the simple, fast, and cost-effective screening of important SNPs and could readily find wide applications in molecular diagnosis laboratories and in point-of-care testing (field testing).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.