Glioblastomas (GBMs) are high‐grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12–15 months following standard therapy. A combination of interventions targeting tumor‐specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR‐specific affibody (ZEGFR:03115) was conjugated to the phthalocyanine dye, IR700DX, which when excited with near‐infrared light produces a cytotoxic response. ZEGFR:03115–IR700DX EGFR‐specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro, in GBM cell lines and spheroids by the CellTiter‐Glo® assay, and in vivo using subcutaneous U87‐MGvIII xenografts. In addition, mice were imaged pre‐ and post‐PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate correlated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor‐dependent response between the tested cell lines. Inhibition of EGFRvIII+ve tumor growth was observed following administration of the immunoconjugate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115–IR700DX showed specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof‐of‐concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.
We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name ‘Cy-droplet’, has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a ‘microbubble condensation’ method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical ‘triggerability’ can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.
Mouse embryos conditionally lacking Tgif1 and Tgif2 have holoprosencephaly and defects in left-right asymmetry. To identify pathways affected by loss of Tgif function during embryogenesis, we performed transcriptome profiling on whole mouse embryos. Among the genes with altered expression in embryos lacking Tgifs were a number with links to cilium function. One of these, Evi5l, encodes a RabGAP that is known to block the formation of cilia when overexpressed. Evi5l expression is increased in Tgif1; Tgif2-null embryos and in double-null mouse embryo fibroblasts (MEFs). Knockdown of Tgifs in a human retinal pigment epithelial cell line also increased EVI5L expression. We show that TGIF1 binds to a conserved consensus TGIF site 5= of the human and mouse Evi5l genes and represses Evi5l expression. In primary MEFs lacking both Tgifs, the number of cells with primary cilia was significantly decreased, and we observed a reduction in the transcriptional response to Shh pathway activation. Reducing Evi5l expression in MEFs lacking Tgifs resulted in a partial restoration of cilium numbers and in the transcriptional response to activation of the Shh pathway. In summary, this work shows that Tgifs regulate ciliogenesis and suggests that Evi5l mediates at least part of this effect.
Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.