The life-cycle energy and fuel-use impacts of U.S.-produced aluminum-intensive passenger cars and passenger trucks are assessed.The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that simulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use d aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminumintensive vehicles. The petroleum energy saved fiom improved he1 efficiency o&ts the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.
Light duty plug-in hybrid electric vehicle (PHEV) technology holds a promising future due to its "friendliness" to the environment and potential to reduce dependence on fossil fuels. However, the likely significant growth of PHEVs will bring new challenges and opportunities for power system infrastructures. This paper studies the impacts of PHEV charging patterns on power system operations and scheduling. The stochastic unit commitment model described in this paper considers coordination of thermal generating units and PHEV charging loads, as well as the penetration of large-scale wind power. The proposed model also addresses ancillary services provided by vehicle-to-grid techniques. Daily electricity demands by various types of PHEVs are estimated on the basis of a PHEV population projection and transportation survey. The stochastic unit commitment model is used to simulate power system scheduling with different charging patterns for PHEVs. The results show that a smart charging pattern can reduce the operating costs of a power system and compensate for the fluctuation in wind power. The proposed model also can serve as a foundation and tool to perform long-term cost-benefit analysis and to assist policy making.Index Terms-Mixed integer programming, plug-in hybrid electric vehicle, stochastic, unit commitment, wind power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.