Purpose The purpose of this article is to clarify current and widespread misconceptions about the properties of blockchain technologies and to describe challenges and avenues for correct and trustworthy design and implementation of distributed ledger system (DLS) or Technology (DLT). Design/methodology/approach The authors contrast the properties of a blockchain with desired, however emergent, properties of a DLS, which is a complex and distributed system. They point out and justify, with facts and analysis, current misconceptions about the blockchain and DLSs. They describe challenges that these systems will need to address and possible solution avenues for achieving trustworthiness. Findings Many of the statements that have appeared on the internet, news and academic articles, such as immutable ledger and exact copies, may be misleading. These are desired emergent properties of a complex system, not assured properties. It is well-known within the distributed systems and critical software community that it is extremely hard to prove that a complex system correctly and completely implements emergent properties. Further research and development for trustworthy DLS design and implementation is needed, both practical and theoretical. Research limitations/implications This is the first known published attempt at describing current misconceptions about blockchain technologies. Further collaborative work, discussions, potential solutions, evaluations, resulting publications and verified reference implementations are needed to ensure DLTs are safe, secure, and trustworthy. Practical implications Interdisciplinary teams with members from academia, business and industry, and from disciplines such as business, entrepreneurship, theoretical and practical computer science, cybersecurity, finance, mathematics and statistics, must be formed. Such teams must collaborate with the objective of developing strategies and techniques for ensuring the correctness and security of future DLSs in which our society may become dependent. Originality value The value and originality of this article is twofold: the disproving, through fact collection and systematic analysis, of current misconceptions about the properties of the blockchain and DLSs, and the discussion of challenges to achieving adequate trustworthiness along with the proposal of general avenues for possible solutions.
The Internet of Things (IoT) ecosystem has experienced significant growth in data traffic and consequently high dimensionality. Intrusion Detection Systems (IDSs) are essential self-protective tools against various cyber-attacks. However, IoT IDS systems face significant challenges due to functional and physical diversity. These IoT characteristics make exploiting all features and attributes for IDS self-protection difficult and unrealistic. This paper proposes and implements a novel feature selection and extraction approach (i.e., our method) for anomaly-based IDS. The approach begins with using two entropy-based approaches (i.e., information gain (IG) and gain ratio (GR)) to select and extract relevant features in various ratios. Then, mathematical set theory (union and intersection) is used to extract the best features. The model framework is trained and tested on the IoT intrusion dataset 2020 (IoTID20) and NSL-KDD dataset using four machine learning algorithms: Bagging, Multilayer Perception, J48, and IBk. Our approach has resulted in 11 and 28 relevant features (out of 86) using the intersection and union, respectively, on IoTID20 and resulted 15 and 25 relevant features (out of 41) using the intersection and union, respectively, on NSL-KDD. We have further compared our approach with other state-of-the-art studies. The comparison reveals that our model is superior and competent, scoring a very high 99.98% classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.