OBJECTIVEIncreased activity of the innate immune system has been implicated in the pathogenesis of the dyslipidemia and insulin resistance associated with obesity and type 2 diabetes. In this study, we addressed the potential role of Kupffer cells (liver-specific macrophages, KCs) in these metabolic abnormalities.RESEARCH DESIGN AND METHODSRats were depleted of KCs by administration of gadolinium chloride, after which all animals were exposed to a 2-week high-fat or high-sucrose diet. Subsequently, the effects of these interventions on the development of hepatic insulin resistance and steatosis were assessed. In further studies, the effects of M1-polarized KCs on hepatocyte lipid metabolism and insulin sensitivity were addressed.RESULTSAs expected, a high-fat or high-sucrose diet induced steatosis and hepatic insulin resistance. However, these metabolic abnormalities were prevented when liver was depleted of KCs. In vitro, KCs recapitulated the in vivo effects of diet by increasing hepatocyte triglyceride accumulation and fatty acid esterification, and decreasing fatty acid oxidation and insulin responsiveness. To address the mechanisms(s) of KC action, we inhibited a panel of cytokines using neutralizing antibodies. Only neutralizing antibodies against tumor necrosis factor-α (TNFα) attenuated KC-induced alterations in hepatocyte fatty acid oxidation, triglyceride accumulation, and insulin responsiveness. Importantly, KC TNFα levels were increased by diet in vivo and in isolated M1-polarized KCs in vitro.CONCLUSIONSThese data demonstrate a role for liver macrophages in diet-induced alterations in hepatic lipid metabolism and insulin sensitivity, and suggest a role for these cells in the etiology of the metabolic abnormalities of obesity/type 2 diabetes.
Phosphatidylinositol 3-kinase (PI3K) pathway of leptin signaling plays an important role in transducing leptin action in the hypothalamus. Obesity is usually associated with resistance to the effect of leptin on food intake and energy homeostasis. Although central leptin resistance is thought to be involved in the development of diet-induced obesity (DIO), the mechanism behind this phenomenon is not clearly understood. To determine whether DIO impairs the effect of leptin on hypothalamic PI3K signaling, we fed 4-wk-old FVB/N mice a high-fat diet (HFD) or low-fat diet (LFD) for 19 wk. HFD-fed mice developed DIO in association with hyperleptinemia, hyperinsulinemia, and impaired glucose and insulin tolerance. Leptin (ip) significantly increased hypothalamic PI3K activity and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) levels in LFD-fed mice but not in DIO mice. Immunocytochemical study confirmed impaired p-STAT3 activation in various hypothalamic areas, including the arcuate nucleus. We next tested whether both PI3K and STAT3 pathways of leptin signaling were impaired during the early period of DIO. Leptin failed to increase PI3K activity in DIO mice that were on a HFD for 4 wk. However, leptin-induced p-STAT3 activation in the hypothalamus measured by Western blotting and immunocytochemistry remained comparable between LFD- and HFD-fed mice. These results suggest that the PI3K pathway but not the STAT3 pathway of leptin signaling is impaired during the development of DIO in FVB/N mice. Thus, a defective PI3K pathway of leptin signaling in the hypothalamus may be one of the mechanisms of central leptin resistance and DIO.
Leptin signalling in the hypothalamus is critical for the maintenance of normal body weight. Although hyperleptinaemia in obese people suggests a state of leptin resistance, and diet-induced obesity in rodents is associated with central leptin resistance, the underlying mechanisms remain unclear. Recent evidence suggests that, in addition to the signal transducer and activator of the transcription-3 (STAT3) pathway, leptin action is critical for energy homeostasis through an insulin-like signalling pathway involving an increase in phosphatidylinositol 3-kinase (PI3K) and phosphodiesterase 3B (PDE3B) activities and reduction in cyclic AMP (cAMP) levels in the hypothalamus. Here, we show that chronic central leptin (160 ng/h) infusion, which resulted in the development of resistance to the satiety action of leptin, impaired the PI3K-PDE3B-cAMP pathway of leptin signalling in the hypothalamus in that PI3K and PDE3B activities were increased and cAMP levels were decreased in the hypothalamus on day 2 of leptin infusion but remained unchanged on day 16. Additionally, induction of tyrosyl phosphorylation of insulin receptor substrate-1 observed on day 2 was not evident on day 16 of leptin infusion. By contrast, signalling through the STAT3-pathway remained activated in the hypothalamus throughout 16 days of leptin infusion. These findings show a differential response in PI3K-PDE3B-cAMP (impaired) and STAT3 (up-regulated) pathways to chronic central leptin infusion, and suggest a selective resistance in the PI3K-PDE3B-cAMP pathway of leptin signalling following a chronic increase in hypothalamic leptin tone attained by central infusion of this peptide hormone.
It is well established that leptin increases the sensitivity of carbohydrate metabolism to the effects of insulin. Leptin and insulin also have potent effects on lipid metabolism. However, the effects of leptin on the regulation of liver lipid metabolism by insulin have not been investigated. The current study addressed the effects of leptin on insulin-regulated hepatic very low-density lipoprotein (VLDL) metabolism in vivo in rats. A 90-min hyperinsulinemic/euglycemic clamp (4 mU/kg x min(-1)) reduced plasma VLDL triglyceride (TG) by about 50% (P < 0.001 vs. saline control). Importantly, a leptin infusion (0.2 microg/kg x min(-1)) in combination with insulin reduced plasma VLDL-TG by about 80% (P < 0.001 vs. insulin alone). These effects did not require altered skeletal muscle lipoprotein lipase activity but did include differential effects of insulin and leptin on liver apolipoprotein (apo) B and TG metabolism. Thus, insulin decreased liver and plasma apoB100/B48 levels (approximately 50%, P < 0.01), increased liver TGs (approximately 20%, P < 0.05), and had no effect on fatty acid oxidation. Conversely, leptin decreased liver TGs (approximately 50%, P < 0.01) and increased fatty acid oxidation (approximately 50%, P < 0.01) but had no effects on liver or plasma apoB levels. Importantly, the TG-depleting and prooxidative effects of leptin were maintained in the presence of insulin. We conclude that leptin additively increases the suppressive effects of insulin on hepatic and systemic VLDL metabolism by stimulating depletion of liver TGs and increasing oxidative metabolism. The net effect of the combined actions of insulin and leptin is to decrease the production and TG content of VLDL particles.
Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.