The development of the GeantV Electromagnetic (EM) physics package has evolved following two necessary paths towards code modernization. A first phase required the revision of the main electromagnetic physics models and their implementation. The main objectives were to improve their accuracy, extend them to the new high-energy frontier posed by the Future Circular Collider (FCC) programme and allow a better adaptation to a multi-particle flow. Most of the EM physics models in GeantV have been reviewed from theoretical perspective and rewritten with vector-friendly implementations, being now available in scalar mode in the alpha release. The second phase consists of a thorough investigation on the possibility to vectorise the most CPU-intensive physics code parts, such as final state sampling. We have shown the feasibility of implementing electromagnetic physics models that take advantage of SIMD/SIMT architectures, thus obtaining gains in performance. After this phase, the time has come for the GeantV project to take a step forward towards the final proof of concept. This takes shape through the testing of the full simulation chain (transport + physics + geometry) running in vectorized mode. In this paper we will present the first benchmark results obtained after vectorizing a full set of electromagnetic physics models.
SIMD acceleration can potentially boost by factors the application throughput. Achieving efficient SIMD vectorization for scalar code with complex data flow and branching logic, goes however way beyond breaking some loop dependencies and relying on the compiler. Since the refactoring effort scales with the number of lines of code, it is important to understand what kind of performance gains can be expected in such complex cases. We started to investigate a couple of years ago a top to bottom vectorization approach to particle transport simulation. Percolating vector data to algorithms was mandatory since not all the components can internally vectorize. Vectorizing low-level algorithms is certainly necessary, but not sufficient to achieve relevant SIMD gains. In addition, the overheads for maintaining the concurrent vector data flow and copy data have to be minimized. In the context of a vectorization R&D for simulation we developed a framework to allow different categories of scalar and vectorized components to co-exist, dealing with data flow management and real-time heuristic optimizations. The paper describes our approach on coordinating SIMD vectorization at framework level, making a detailed quantitative analysis of the SIMD gain versus overheads, with a breakdown by components in terms of geometry, physics and magnetic field propagation. We also present the more general context of this R&D work and goals for 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.