Background:The glucocorticoid (GR) and peroxisome proliferator-activated (PPAR␥) receptors are antagonists of lipid metabolism. Results: Protein phosphatase 5 (PP5) dephosphorylates GR and PPAR␥ to reciprocally control their activities. Conclusion: PP5 is a switch point in nuclear receptor control of lipid metabolism. Significance: PP5 is a potential new drug target in the treatment of obesity.
The TPR proteins FKBP52, FKBP51, Cyp40 and PP5 are found in steroid receptor (SR) complexes but their receptor-specific preferences and roles remain unresolved. We have undertaken a systematic approach to this problem by examining the contribution of all four TPRs to the localization properties of glucocorticoid (GR) and progesterone (PR) receptors. The GR of L929 cells was found in the cytoplasm in a complex containing PP5 and FKBP51, while GR of WCL2 cells was nuclear and contained PP5 and FKBP52. Cyp40 did not interact with GR in either cell line. To test whether FKBP interaction determined localization, we over-expressed Flag-tagged FKBP51 in WCL2 cells and Flag-FKBP52 in L929 cells. In WCL2 cells, GR showed a shift to greater cytoplasmic localization that correlated with recruitment of Flag-FKBP51. In contrast, Flag-FKBP52 was not recruited to GR of L929 cells and no change in localization was observed, suggesting that both cell-type specific mechanisms and TPR abundance contribute to the SR/TPR interaction. As a further test, GR-GFP and PR-GFP constructs were expressed in COS cells. GR-GFP localized to the cytoplasm, while PR-GFP was predominantly nuclear. Similar to L929 cells, GR in COS interacted with PP5 and FKBP51, while PR interacted with FKBP52. Analysis of GR/PR chimeric constructs revealed that the ligand-binding domain of each receptor determines both TPR specificity and localization. Lastly, we analyzed GR and PR localization in cells completely lacking TPR. PR in FKBP52 KO cells showed a complete shift to the cytoplasm, while GR in FKBP51 KO and PP5 KO cells showed a moderate shift to the nucleus, indicating that both TPRs contribute to GR localization. Our results demonstrate that SRs have distinct preferences for TPR proteins -a property that resides in the LBD and which can now explain long-standing differences in receptor subcellular localization. NIH Public Access Author ManuscriptBiochemistry. Author manuscript; available in PMC 2011 February 26. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptSteroidal control of physiology requires the activation of steroid receptors (SR) 1 , which serve as regulators of differential gene expression (1,2). Prior to hormone binding, all members of the SR family are known to enter into large heteromeric complexes containing the molecular chaperone HSP90 and the co-chaperone p23 (3). However, a number of additional co-chaperones have been identified that seem to variably interact with SR complexes (4,5). These are FK506-binding protein 52 (FKBP52), the closely related FK506-binding protein 51 (FKBP51), cyclosporin A-binding protein (Cyp40) and protein phosphatase 5 (PP5). A common feature of these proteins is the presence of imperfect tetratricopeptide repeat (TPR) motifs that serve as protein-protein interaction domains (6). Indeed, TPR proteins enter into SR complexes through a direct binding to HSP90 at its Cterminal TPR acceptor site (7-9). Interestingly, most studies suggest that the TPR acceptor site of HSP90 can ac...
Previous research identified barriers to CR participation in the South Asian community, and this study is the first to identify facilitators. Results suggest that families should be included in patient-education sessions, CR should be reinforced by healthcare providers, and the provider team should recognize cultural preferences.
There are two well-described thermogenic sites; brown adipose tissue (BAT) and skeletal muscle, which utilize distinct mechanisms of heat production. In BAT, mitochondrial metabolism is the molecular basis of heat generation, while it serves only a secondary role in supplying energy for thermogenesis in muscle. Here, we wanted to document changes in mitochondrial ultrastructure in these two tissue types based upon adaptation to mild (16°C) and severe (4°C) cold in mice. When reared at thermoneutrality (29°C), mitochondria in both tissues were loosely packed with irregular cristae. Interestingly, adaptation to even mild cold initiated ultrastructural remodeling of mitochondria including acquisition of more elaborate cristae structure in both thermogenic sites. The shape of mitochondria in the BAT remained mostly circular, whereas the intermyofibrilar mitochondria in the skeletal muscle became more elongated and tubular. The most dramatic remodeling of mitochondrial architecture was observed upon adaptation to severe cold. In addition, we report cold-induced alteration in levels of humoral factors: fibroblast growth factor 21 (FGF21), IL1α, peptide YY (PYY), tumor necrosis factor α (TNFα), and interleukin 6 (IL6) were all induced whereas both insulin and leptin were down-regulated. In summary, adaptation to cold leads to enhanced cristae formation in mitochondria in skeletal muscle as well as the BAT. Further, the present study indicates that circulating cytokines might play an important role in the synergistic recruitment of the thermogenic program including cross-talk between muscle and BAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.