Transcription factor NF-κB plays a central role in immunity from fruit flies to humans, and NF-κB activity is altered in many human diseases. To investigate a role for NF-κB in immunity and disease on a broader evolutionary scale we have characterized NF-κB in a sea anemone (Exaiptasia pallida; called Aiptasia herein) model for cnidarian symbiosis and dysbiosis (i.e., “bleaching”). We show that the DNA-binding site specificity of Aiptasia NF-κB is similar to NF-κB proteins from a broad expanse of organisms. Analyses of NF-κB and IκB kinase proteins from Aiptasia suggest that non-canonical NF-κB processing is an evolutionarily ancient pathway, which can be reconstituted in human cells. In Aiptasia, NF-κB protein levels, DNA-binding activity, and tissue expression increase when loss of the algal symbiont Symbiodinium is induced by heat or chemical treatment. Kinetic analysis of NF-κB levels following loss of symbiosis show that NF-κB levels increase only after Symbiodinium is cleared. Moreover, introduction of Symbiodinium into naïve Aiptasia larvae results in a decrease in NF-κB expression. Our results suggest that Symbiodinium suppresses NF-κB in order to enable establishment of symbiosis in Aiptasia. These results are the first to demonstrate a link between changes in the conserved immune regulatory protein NF-κB and cnidarian symbiotic status.
Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal extracellular vesicles using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal extracellular vesicles, particularly miRNAs, is altered in adult males exposed to postnatal stress. In some cases, these miRNA changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.
Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The RNA composition of sperm is influenced during its final stage of maturation in the epididymis by extracellular vesicles released by epididymal cells. We studied the effect of exposure to stress in postnatal life on the transcriptome of epididymal extracellular vesicles using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal extracellular vesicles, particularly miRNAs, is altered in adult males exposed to postnatal stress. miRNAs changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.