Epidemiological studies suggest that insulin resistance accelerates progression of age-based cognitive impairment, which neuroimaging has linked to brain glucose hypometabolism. As cellular inputs, ketones increase Gibbs free energy change for ATP by 27% compared to glucose. Here we test whether dietary changes are capable of modulating sustained functional communication between brain regions (network stability) by changing their predominant dietary fuel from glucose to ketones. We first established network stability as a biomarker for brain aging using two large-scale (n= 292, ages 20 to 85 y;n= 636, ages 18 to 88 y) 3 T functional MRI (fMRI) datasets. To determine whether diet can influence brain network stability, we additionally scanned 42 adults, age < 50 y, using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for single-participant-level detection sensitivity. One cohort was scanned under standard diet, overnight fasting, and ketogenic diet conditions. To isolate the impact of fuel type, an independent overnight fasted cohort was scanned before and after administration of a calorie-matched glucose and exogenous ketone ester (d-β-hydroxybutyrate) bolus. Across the life span, brain network destabilization correlated with decreased brain activity and cognitive acuity. Effects emerged at 47 y, with the most rapid degeneration occurring at 60 y. Networks were destabilized by glucose and stabilized by ketones, irrespective of whether ketosis was achieved with a ketogenic diet or exogenous ketone ester. Together, our results suggest that brain network destabilization may reflect early signs of hypometabolism, associated with dementia. Dietary interventions resulting in ketone utilization increase available energy and thus may show potential in protecting the aging brain.
Brain aging is associated with hypometabolism and global changes in functional connectivity. Using functional MRI (fMRI), we show that network synchrony, a collective property of brain activity, decreases with age. Applying quantitative methods from statistical physics, we provide a generative (Ising) model for these changes as a function of the average communication strength between brain regions. We find that older brains are closer to a critical point of this communication strength, in which even small changes in metabolism lead to abrupt changes in network synchrony. Finally, by experimentally modulating metabolic activity in younger adults, we show how metabolism alone—independent of other changes associated with aging—can provide a plausible candidate mechanism for marked reorganization of brain network topology.
Single-cell protein expression time trajectories provide rich temporal data quantifying cellular variability and its role in dictating fitness. However, theoretical models to analyze and fully extract information from these measurements remain limited for three reasons: (i) gene expression profiles are noisy, rendering models of averages inapplicable, (ii) experiments typically measure only a few protein species while leaving other molecular actors—necessary to build traditional bottom-up models—unnoticed, and (iii) measured data are in fluorescence, not particle number. We recently addressed these challenges in an alternate top-down approach using the principle of Maximum Caliber (MaxCal) to model genetic switches with one and two protein species. In the present work we address scalability and broader applicability of MaxCal by extending to a three-gene (A, B, C) feedback network that exhibits oscillation, commonly known as the repressilator. We test MaxCal’s inferential power by using synthetic data of noisy protein number time traces—serving as a proxy for experimental data—generated from a known underlying model. We notice that the minimal MaxCal model—accounting for production, degradation, and only one type of symmetric coupling between all three species—reasonably infers several underlying features of the circuit such as the effective production rate, degradation rate, frequency of oscillation, and protein number distribution. Next, we build models of higher complexity including different levels of coupling between A, B, and C and rigorously assess their relative performance. While the minimal model (with four parameters) performs remarkably well, we note that the most complex model (with six parameters) allowing all possible forms of crosstalk between A, B, and C slightly improves prediction of rates, but avoids ad hoc assumption of all the other models. It is also the model of choice based on Bayesian information criteria. We further analyzed time trajectories in arbitrary fluorescence (using synthetic trajectories) to mimic realistic data. We conclude that even with a three-protein system including both fluorescence noise and intrinsic gene expression fluctuations, MaxCal can faithfully infer underlying details of the network, opening future directions to model other network motifs with many species.
The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer’s disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.