Minimally invasive medical procedures have become increasingly common in today's healthcare practice. Images taken during such procedures largely show tissues of human organs, such as the mucosa of the gastrointestinal tract. These surfaces usually have a glossy appearance showing specular highlights. For many visual analysis algorithms, these distinct and bright visual features can become a significant source of error. In this article, we propose two methods to address this problem: (a) a segmentation method based on nonlinear filtering and colour image thresholding and (b) an efficient inpainting method. The inpainting algorithm eliminates the negative effect of specular highlights on other image analysis algorithms and also gives a visually pleasing result. The methods compare favourably to the existing approaches reported for endoscopic imaging. Furthermore, in contrast to the existing approaches, the proposed segmentation method is applicable to the widely used sequential RGB image acquisition systems.
Learning vector quantization (LVQ) constitutes a powerful and intuitive method for adaptive nearest prototype classification. However, original LVQ has been introduced based on heuristics and numerous modifications exist to achieve better convergence and stability. Recently, a mathematical foundation by means of a cost function has been proposed which, as a limiting case, yields a learning rule similar to classical LVQ2.1. It also motivates a modification which shows better stability. However, the exact dynamics as well as the generalization ability of many LVQ algorithms have not been thoroughly investigated so far. Using concepts from statistical physics and the theory of on-line learning, we present a mathematical framework to analyse the performance of different LVQ algorithms in a typical scenario in terms of their dynamics, sensitivity to initial conditions, and generalization ability. Significant differences in the algorithmic stability and generalization ability can be found already for slightly different variants of LVQ. We study five LVQ algorithms in detail: Kohonen's original LVQ1, unsupervised vector quantization (VQ), a mixture of VQ and LVQ, LVQ2.1, and a variant of LVQ which is based on a cost function. Surprisingly, basic LVQ1 shows very good performance in terms of stability, asymptotic generalization ability, and robustness to initializations and model parameters which, in many cases, is superior to recent alternative proposals.
Abstract-With inspiration from psychophysical researches of the human visual system, we propose a novel aspect and a method for performance evaluation of contour-based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a test set. The performance of an algorithm is reported using the recognition rate as a function of the percentage of contour retained. We call this evaluation procedure the ICR test. We consider three types of contour incompleteness, viz. segment-wise contour deletion, occlusion, and random pixel depletion. As an illustration, the robustness of two shape recognition algorithms to contour incompleteness is evaluated. These algorithms use a shape context and a distance multiset as local shape descriptors. Qualitatively, both algorithms mimic human visual perception in the sense that recognition performance monotonously increases with the degree of completeness and that they perform best in the case of random depletion and worst in the case of occluded contours. The distance multiset method performs better than the shape context method in this test framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.