To predict future claims, it is well-known that the most recent claims are more predictive than older ones. However, classic panel data models for claim counts, such as the multivariate negative binomial distribution, do not put any time weight on past claims. More complex models can be used to consider this property, but often need numerical procedures to estimate parameters. When we want to add a dependence between different claim count types, the task would be even more difficult to handle. In this paper, we propose a bivariate dynamic model for claim counts, where past claims experience of a given claim type is used to better predict the other type of claims. This new bivariate dynamic distribution for claim counts is based on random effects that come from the Sarmanov family of multivariate distributions. To obtain a proper dynamic distribution based on this kind of bivariate priors, an approximation of the posterior distribution of the random effects is proposed. The resulting model can be seen as an extension of the dynamic heterogeneity model described in Bolancé et al. (2007). We apply this model to two samples of data from a major Canadian insurance company, where we show that the proposed model is one of the best models to adjust the data. We also show that the proposed model allows more flexibility in computing predictive premiums because closed-form expressions can be easily derived for the predictive distribution, the moments and the predictive moments.
One of the most critical problems in property/casualty insurance is to determine an appropriate reserve for incurred but unpaid losses. These provisions generally comprise most of the liabilities of a non-life insurance company. The global provisions are often determined under an assumption of independence between the lines of business. Recently, Shi and Frees (2011) proposed to put dependence between lines of business with a copula that captures dependence between two cells of two different runoff triangles. In this paper, we propose to generalize this model in two steps. First, by using an idea proposed by Barnett and Zehnwirth (1998), we will suppose a dependence between all the observations that belong to the same calendar year for each line of business. Thereafter, we will then suppose another dependence structure that links the calendar years of different lines of business. This model is done by using hierarchical Archimedean copulas. We show that the model provides more flexibility than existing models, and offers a better, more realistic and more intuitive interpretation of the dependence between the lines of business. For illustration, the model is first applied to a dataset from a major US property-casualty insurer, and then to two lines of business from a large Canadian insurer.
In order to determine the risk capital for their aggregate portfolio, property and casualty insurance companies must fit a multivariate model to the loss triangle data relating to each of their lines of business. As an inadequate choice of dependence structure may have an undesirable effect on reserve estimation, a two-stage inference strategy is proposed in this paper to assist with model selection and validation. Generalized linear models are first fitted to the margins. Standardized residuals from these models are then linked through a copula selected and validated using rank-based methods. The approach is illustrated with data from six lines of business of a large Canadian insurance company for which two hierarchical dependence models are considered, i.e., a fully nested Archimedean copula structure and a copula-based risk aggregation model.
The correlation among multiple lines of business plays a critical role in aggregating claims and thus determining loss reserves for an insurance portfolio. We show that the Sarmanov family of bivariate distributions is a convenient choice to capture the dependencies introduced by various sources, including the common calendar year, accident year and development period effects. The density of the bivariate Sarmanov distributions with different marginals can be expressed as a linear combination of products of independent marginal densities. This pseudo-conjugate property greatly reduces the complexity of posterior computations. In a case study, we analyze an insurance portfolio of personal and commercial auto lines from a major US property-casualty insurer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.