0D transition metal phosphides (TMPs) nanocrystals (NCs)–2D ultrathin black phosphorus (BP) heterostructure (Ni2P@BP) have been synthesized via a facile sonication‐assisted exfoliation followed by a solvothermal process. Compared with the bare BP, the specially designed Ni2P@BP architecture can enhance the electrical conductivity (from 2.12 × 102 to 6.25 × 104 S m–1), tune the charge carrier concentration (from 1.25 × 1017 to 1.37 × 1020 cm–3), and reduce the thermal conductivity (from 44.5 to 7.69 W m–1 K–1) at 300 K, which can be considered for multiple applications. As a result, the Ni2P@BP exhibits excellent Li storage properties and high hydrogen evolution reaction electrocatalytic activities. The Ni2P@BP shows improved Li diffusion kinetics (e.g., the Li ions diffusion coefficient increases from 1.14 × 10–14 cm2 s–1 for pure BP nanosheets to 8.02 × 10–13 cm2 s–1 for Ni2P@BP). In addition, the Ni2P@BP electrode sustains hydrogen production with almost unchanged activity over 3000 cycles, which indicates its good chemical stability when operating under strong reducing environment.
The conceptual understanding of charge transport in conducting polymers is still ambiguous due to a wide range of paracrystallinity (disorder). Here, we advance this understanding by presenting the relationship between transport, electronic density of states and scattering parameter in conducting polymers. We show that the tail of the density of states possesses a Gaussian form confirmed by two-dimensional tight-binding model supported by Density Functional Theory and Molecular Dynamics simulations. Furthermore, by using the Boltzmann Transport Equation, we find that transport can be understood by the scattering parameter and the effective density of states. Our model aligns well with the experimental transport properties of a variety of conducting polymers; the scattering parameter affects electrical conductivity, carrier mobility, and Seebeck coefficient, while the effective density of states only affects the electrical conductivity. We hope our results advance the fundamental understanding of charge transport in conducting polymers to further enhance their performance in electronic applications.
Thermoelectric materials have the ability to convert heat energy to electrical power and vice versa. While the thermodynamic upper limit is defined by the Carnot efficiency, the material figure of merit, ZT is far from this theoretical limit, typically limited by a complex interplay of non-equilibrium charge and phonon scattering. Materials innovation is a slow, arduous process due to the complex correlations between crystal structure, microstructure engineering and thermoelectric properties. Many physical concepts and materials have been unearthed in this path to discovery, supported ably by innovations in technology over many decades, revealing important material and transport descriptors. In this review, we look back at some case studies of inorganic thermoelectric materials employing a birds-eye view of complementary advancements in scientific concepts and technological advancements and conclude that most high values of zT have emerged from new scientific ideas fueled by moderately mature technologies. Based on this conclusion, we then propose that the recent emergence of datadriven approaches and high throughput experiments, encompassing synthesis as well as characterization, with machine learning guided inverse design is perfectly suited to provide an accelerated pathway towards the discovery of next-generation thermoelectric materials, potentially providing a feasible alternative source of energy for a sustainable future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.