This paper presents a novel mechanism for fingerprint dynamic presentation attack detection. We utilize five spatio-temporal feature extractors to efficiently eliminate and mitigate different presentation attack species. The feature extractors are selected such that the fingerprint ridge/valley pattern is consolidated with the temporal variations within the pattern in fingerprint videos. An SVM classification scheme, with a second degree polynomial kernel, is used in our presentation attack detection subsystem to classify bona fide and attack presentations. The experiment protocol and evaluation are conducted following the ISO/IEC 30107-3:2017 standard. Our proposed approach demonstrates efficient capability of detecting presentation attacks with significantly low BPCER where BPCER is 1.11% for an optical sensor and 3.89% for a thermal sensor at 5% APCER for both.
Fingerprint recognition systems have proven significant performance in many services such as forensics, border control, and mobile applications. Even though fingerprint systems have shown high accuracy and user acceptance, concerns have raised questions about the possibility of having our fingerprint pattern stolen and presented to the system by an imposter. In this paper, we propose a dynamic presentation attack detection mechanism that seeks to mitigate presentation attacks. The adopted mechanism extracts the variation of global fingerprint features in video acquisition scenario and uses it to distinguish bona fide from attack presentations. For that purpose, a dynamic dataset has been collected from 11 independent subjects, 6 fingerprints per user, using thermal and optical sensors. A total of 792 bona fide presentations and 2772 attack presentations are collected. The final PAD subsystem is evaluated based on the standard ISO/IEC 30107-3. Considering SVM classification and 3 folds cross validation, the obtained error rates at 5% APCER are 18.1% BPCER for the thermal subset and 19.5% BPCER for the optical subset.
In the last few decades, we have witnessed a large-scale deployment of biometric systems in different life applications replacing the traditional recognition methods such as passwords and tokens. We approached a time where we use biometric systems in our daily life. On a personal scale, the authentication to our electronic devices (smartphones, tablets, laptops, etc.) utilizes biometric characteristics to provide access permission. Moreover, we access our bank accounts, perform various types of payments and transactions using the biometric sensors integrated into our devices. On the other hand, different organizations, companies, and institutions use biometric-based solutions for access control. On the national scale, police authorities and border control measures use biometric recognition devices for individual identification and verification purposes.
High Dynamic Range (HDR) image provides higher perceptual quality such that it appears considerably more realistic and attractive for the human observer. Since most of current screens are Low Dynamic Range (LDR) screens, lots of researches have been proposed to design tone mapping algorithms converting the HDR images into a range that is suitable to display these tone mapped images on standard LDR screens. For this purpose, this paper first investigates the pixels distribution in the HDR image through the study of various traditional Histogram Equalization (HE) algorithms which were originally developed to improve the visual quality of LDR images such as the contrast enhancement of the latter. Moreover, a modification of the Histogram Adjustment based Linear to Equalized Quantizer (HALEQ), developed for HDR images, is proposed. Simulation results show that the proposed modification preserves more details than the original version of the algorithm in most parts of the HDR image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.