Metabolomics, which is the metabolites profiling in biological matrices, is a key tool for biomarker discovery and personalized medicine and has great potential to elucidate the ultimate product of the genomic processes. Over the last decade, metabolomics studies have identified several relevant biomarkers involved in complex clinical phenotypes using diverse biological systems. Most diseases result in signature metabolic profiles that reflect the sums of external and internal cellular activities. Metabolomics has a major role in clinical practice as it represents >95% of the workload in clinical laboratories worldwide. Many of these metabolites require different analytical platforms, such as Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), and Ultra Performance Liquid Chromatography (UPLC), while many clinically relevant metabolites are still not routinely amenable to detection using currently available assays. Combining metabolomics with genomics, transcriptomics, and proteomics studies will result in a significantly improved understanding of the disease mechanisms and the pathophysiology of the target clinical phenotype. This comprehensive approach will represent a major step forward toward providing precision medical care, in which individual is accounted for variability in genes, environment, and personal lifestyle. In this review, we compare and evaluate the metabolomics strategies and studies that focus on the discovery of biomarkers that have "personalized" diagnostic, prognostic, and therapeutic value, validated for monitoring disease progression and responses to various management regimens.
Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-Tyrosine Phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, though the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2+ xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2+ BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The Moyamoya disease gene product RNF213 , an E3 ligase, is negatively regulated by PTP1B in HER2+ BC cells. RNF213 knockdown reverses the effects of PTP1B-deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2+ BC cells, and partially restores tumourigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2+ BC, and possibly other malignancies, in the hypoxic tumour microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.