Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.
Thymic stromal lymphopoietin (TSLP) plays a pivotal role in allergic diseases such as asthma, chronic obstructive pulmonary disease, and atopic dermatitis. Enhanced TSLP expression has been detected in asthmatic airways that correlated with both the expression of Th2-attracting chemokines and with disease severity. Although cumulative evidence suggests that human airway smooth muscle (HASM) cells can initiate or perpetuate the airway inflammation by secreting a variety of inflammatory cell products such as cytokines and chemokines, the role of TSLP in this pathway is not known. In the current study, we sought to investigate whether HASM cells express the TSLP receptor (TSLPR) and whether it is functional. We first demonstrated that primary HASM cells express the transcript and protein of both TSLPR subunits (TSLPR and IL-7Rα). Functionally, TSLPR-mediated HASM activation induced a significant increase in CXC (IL-8/CXCL8), CC (eotaxin-1/CCL11) chemokines, and proinflammatory cytokine IL-6 expression. Furthermore, using biochemical and genetic approaches, we found that TSLP-induced proinflammatory gene expression in HASM involved the transcriptional mechanisms, MAPKs (ERK1/2, p38, and JNK), and STAT3 activation. Finally, TSLPR immunoreactivity in bronchial sections from mild allergic asthmatics suggested the potential in vivo TSLP targeting of HASM. Altogether, our data suggest that the TSLPR-mediated HASM activation induces proinflammatory cytokine and chemokines release that may facilitate inflammatory immune cells recruitment in airways. In addition, it may be inferred that TSLPR is involved in the pathogenesis of allergic asthma through the activation of HASM cells by TSLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.