One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user's emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell's Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the α, β, δ, and θ waves and High Order Crossing of the EEG signal.
The advancement in technology indicates that there is an opportunity to enhance human-computer interaction by way of affective state recognition. Affective state recognition is typically based on passive stimuli such as watching video clips, which does not reflect genuine interaction. This paper presents a study on affective state recognition using active stimuli, i.e. facial expressions of users when they attempt computerised tasks, particularly across typical usage of computer systems. A data collection experiment is presented for acquiring data from normal users whilst they interact with software, attempting to complete a set of predefined tasks. In addition, a hierarchical machine learning approach is presented for facial expression-based affective state recognition, which employs an Euclidean distance-based feature representation, conjointly with a customised encoding for users' self-reported affective states. Consequently, the aim is to find the potential relationship between the facial expressions, as defined by Paul Ekman, and the self-reported emotional states specified by users using Russells Circumplex model, in relation to the actual feelings and affective states. The main findings of this study suggest that facial expressions cannot precisely reveal the actual feelings of users whilst interacting with common computerised tasks. Moreover, during active interaction tasks more variation occurs within the facial expressions of participants than occurs within passive interaction.
The ubiquitous computing paradigm is becoming a reality; we are reaching a level of automation and computing in which people and devices interact seamlessly. However, one of the main challenges is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram (EEG) as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the users emotions. In this context, this paper investigates feature vector generation from EEG signals for the purpose of affective state modelling based on Russells Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect and interaction experiences through exploitation of different input modalities. The DEAP dataset was used within this work, along with a Support Vector Machine, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the α, β, δ, and θ waves and High Order Crossing of the EEG signal.
Emotions play an important role in human communication, interaction, and decision making processes. Therefore, considerable efforts have been made towards the automatic identification of human emotions, in particular electroencephalogram (EEG) signals and Data Mining (DM) techniques have been then used to create models recognizing the affective states of users. However, most previous works have used clinical grade EEG systems with at least 32 electrodes. These systems are expensive and cumbersome, and therefore unsuitable for usage during normal daily activities. Smaller EEG headsets such as the Emotiv are now available and can be used during daily activities. This paper investigates the accuracy and applicability of previous affective recognition methods on data collected with an Emotiv headset while participants used a personal computer to fulfill several tasks. Several features were extracted from four channels only (AF3, AF4, F3 and F4 in accordance with the 10-20 system). Both Support Vector Machine and Naïve Bayes were used for emotion classification. Results demonstrate that such methods can be used to accurately detect emotions using a small EEG headset during a normal daily activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.