Patient-derived tumoroid (PDT) has been developed and used for anti-drug screening in the last decade. As compared to other existing drug screening models, a PDT-based in vitro 3D cell culture model could preserve the histological and mutational characteristics of their corresponding tumors and mimic the tumor microenvironment. However, few studies have been carried out to improve the microvascular network connecting the PDT and its surrounding microenvironment, knowing that poor tumor-selective drug transport and delivery is one of the major reasons for both the failure of anti-cancer drug screens and resistance in clinical treatment. In this study, we formed vascularized PDTs in six days using multiple cell types which maintain the histopathological features of the original cancer tissue. Furthermore, our results demonstrated a vascular network connecting PDT and its surrounding microenvironment. This fast and promising PDT model opens new perspectives for personalized medicine: this model could easily be used to test all therapeutic treatments and could be connected with a microfluidic device for more accurate drug screening.
Radiation therapy and platinum-based chemotherapy are common treatments for lung cancer patients. Several factors are considered for the low overall survival rate of lung cancer, such as the patient’s physical state and the complex heterogeneity of the tumor, which leads to resistance to the treatment. Consequently, precision medicines are needed for the patients to improve their survival and their quality of life. Until now, no patient-derived tumoroid model has been reported to predict the efficiency of radiation therapy in non-small-cell lung cancer. Using our patient-derived tumoroid model, we report that this model could be used to evaluate the efficiency of radiation therapy and cisplatin-based chemotherapy in non-small-cell lung cancer. In addition, these results can be correlated to clinical outcomes of patients, indicating that this patient-derived tumoroid model can predict the response to radiotherapy and chemotherapy in non-small-cell lung cancer.
Irreversible pulp inflammation is so painful that the clinical treatment is the removal of the entire pulp tissue. The current irreversibility of this inflammation is due to the lack of suitable biomaterials able to control it and to orchestrate pulp regeneration. Vitality of the tooth is so important for its functional life that adequate regenerative biomaterials must be developed. Whatever the degree of tooth maturity and its pathology, pulp and surrounding tissues constitute a treasure of dental stem cells. Advances of regenerative nanomedicine provide innovative strategies to use these strongly regenerative stem cells for endodontic regeneration. These cells can support endodontic regeneration by cell homing or by being seeded in biomaterials. Whatever the regenerative strategy, nanotechnologies optimise the attraction, colonisation, proliferation and differentiation of dental stem cells. The nano-reservoirs of active biomolecules orchestrate and enhance their cellular functions. The nanofibers constitute biomimetic scaffolds which promote their pulp connective tissue regeneration. Nanostructured composite scaffolds functionalized by controlled drug delivery systems of several active biomolecules would be the future nanobiomaterials for meeting the challenge of the complex endodontic regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.