New tubular host molecules, which are composed of two β-cyclodextrin macrocycles that are connected through two disulfide bonds, have been prepared by the air-promoted oxidation of 6(I),6(IV)-dideoxy-6(I),6(IV)-disulfanyl-β-cyclodextrin in aqueous solution. This reaction leads to three products: monomeric intramolecular disulfide and two dimeric species, which are termed as "non-eclipsed" and "eclipsed" cyclodextrin duplexes. Oxidation at a concentration of the starting thiol of 0.1 mM gave the intramolecular disulfide as the major product whereas a concentration in the millimolar range afforded the dimeric species as the dominant products. The tubular structure of the "non-eclipsed" isomer was unequivocally determined by X-ray analysis. The binding affinities of the duplexes to a wide range of compounds, including fluorescent dyes and clinically used drugs Imatinib and Esomeprazol, were studied in water by ITC. For most guest compounds, the experimentally determined K(a) values were in the range 10(7)-10(8) M(-1). These binding affinities are significantly higher than those found in the literature for analogous complexes with native cyclodextrins. In cases of binding of neutral or anionic guest molecules cyclodextrin duplexes outperformed cucurbiturils. A complex between a duplex and Nile blue was used to investigate its ability to penetrate the cytoplasmic membrane of HeLa cells. We found that the complex accumulated in the cell membrane but did not pass into cytosol. Importantly, the complex did not decompose to a significant extent under high dilution in the cellular environment.
institute of organic chemistry and Biochemistry aS cr, v.v.i., prague 6, czech republic ABSTRACT Per-2,3-di-O-methyl-and per-2,3-di-O-allyl-β-cyclodextrin duplexes held by two disulfide bonds between their primary faces have been prepared. Permethylation significantly increased the solubility of the cyclodextrin duplexes in a wide range of solvents from water to chlorinated hydrocarbons. Per-2,3-di-O-methylated duplexes are able to form inclusion complexes with organic molecules in aqueous solutions, yet the stability constants are lower by 4-5 orders of magnitude as compared to analogous non-alkylated β-cyclodextrin duplexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.