Despite the fact that aviation gas turbine engines (GTE) have reached a high degree of sophistication, requirements for the improvement of their efficiency are constantly increasing. Reduction of specific fuel consumption and specific weight of the engine unit makes it possible to improve aircraft performance. One of the effective means of reducing specific fuel consumption and obtaining high thermal efficiency of a gas turbine engine is the use of heat recovery, so the interest in it holds throughout the period of development of gas turbine engines. However, the use of heat recovery in aircraft gas turbine engines is faced with a contradiction: on the one hand, heat recovery allows reducing specific fuel consumption, but, on the other hand, it increases the weight of the power plant due to the presence of a heat exchanger. Moreover, with the increase in the degree of regeneration, specific fuel consumption decreases, whereas the mass of the power plant increases.To obtain the desired effect, it is necessary to optimize simultaneously both the parameters of the engine work process and the degree of regeneration of the heat exchanger according to the criteria of evaluating the engine unit in the aircraft system. For this purpose, it is necessary to have a mathematical model for estimating the weight of a highly efficient aircraft heat exchanger. The article presents a developed mathematical model for calculating the weight of a compact plate heat exchanger used to increase the efficiency of a gas turbine engine due to the heating of compressed air entering the combustion chamber by the hot gas that enters the combustion chamber from behind the turbine. We chose a rational pattern of relative motion of the working media in the heat exchanger, the optimal type of plate-type heat transfer surface in terms of minimizing the weight of the heat exchanger and the hydraulic losses in the air and gas ducts. For the selected surface type, the dependence of the specific weight of the heat exchanger on the degree of regeneration is determined for different nozzle exhaust velocities on the basis of a computational algorithm. To assess the reliability of the obtained model, comparative analysis of the effect of the degree of regeneration on the specific weight of the heat exchanger was carried out, based on the comparison of the results of calculations for the developed model with the data of other authors and with the data for the produced regenerators.
The paper features the problems of staff motivation in the automotive industry in the context of foreign economic activity. In the modern conditions, the increase in the efficiency of foreign economic activity of automobile industry enterprises is largely ensured by the development of human capital and the motivation system that is able to maximize the potential of employees. The research objective was to develop an innovative approach to the staff motivation in the automotive industry in the context of foreign economic activity. The paper contains a retrospective analysis of various approaches to employee motivation. Comparative and benchmarking approaches were used to substantiate the most promising and modern ways of stimulating the labor activity of personnel. Modern technologies of motivation have a wide range of negative consequences for the automotive industry. For instance, the imbalance in personnel training results from the fact that there are not enough qualified technical and computer specialists. Moreover, staff motivation methods have been limited to monetary incentives, which has led to low commitment, involvement, and loyalty. There is also a lack of mechanisms for innovations. These processes reduce the economic sustainability of automotive enterprises, as well as their ability to expand markets and competitiveness in the global economy. A system of integrated analysis of approaches could solve the problems of staff motivation in the automotive industry enterprises of the Russian Federation in the modern foreign market conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.