Given the longitudinal average velocity and energy consumption of a Full Electric Vehicle (FEV) for any given part of a targeted road trip, this work solves the problem of online remaining range estimation, i.e., predicting, at any given travelled distance from the beginning of the trip, the actual distance the vehicle can still be driven before recharging is required. Modelling the remaining range is closely related with modelling the energy consumption of an electric vehicle. The latter remains an open problem due to unknown context data that may apply such as driving trip speed, vehicle load and topographical characteristics. In this work, a regression model is formulated in order to learn, from time/location-variant real driving data, a relationship between the future energy consumption on one side, and the following related factors, which are considered known, on the other side: i) the difference in average velocity between the future and the past ii) the difference in elevation rate between the future and the past and iii) the recent past energy consumption. Experimental results on around 2000km of discharge trips, demonstrate the effectiveness of the method over a conventional method that is based solely on historic energy usage evidence. An average Mean Absolute Error (MAE) of 1.64 km and of 1.95 km is obtained when the regression model is evaluated on a model trained without and with elevation respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.