Magnetic Fe3O4 nanoparticles (MNPs) have great potential for nucleic acid separation, detection, and delivery. MNPs are considered a valuable tool in biomedicine due to their cost-effectiveness, stability, easy surface functionalization, and the possibility of the manipulations under a magnetic field. Herein, the synthesis of magnetic nylon 6 nanocomposites (MNPs@Ny6) was investigated. Transmission electron microscopy (TEM) was used for morphology and size analysis. A new method of UV-induced immobilization of oligonucleotides on MNPs@Ny6 for nucleic acid magnetic separation was proposed. MNPs@Ny6 shows a high oligonucleotide binding capacity of 2.2 nmol/mg with 73.3% loading efficiency. The proposed system has been applied to analyze model mixtures of target RNA on the total yeast RNA background. The RNA target isolation efficiency was 60% with high specificity. The bind RNA release was 88.8% in a quantity of 0.16 nmol/mg. The total RNA capture efficiency was 53%. Considering this, the MNPs@Ny6 is an attractive candidate for nucleic acids-specific magnetic isolation.
Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.
Nanowire or nanobelt sensors based on silicon-on-insulator field-effect transistors (SOI-FETs) are one of the leading directions of label-free biosensors. An essential issue in this device construction type is obtaining reproducible results from electrochemical measurements. It is affected by many factors, including the measuring solution and the design parameters of the sensor. The biosensor surface should be charged minimally for the highest sensitivity and maximum effect from interaction with other charged molecules. Therefore, the pH value should be chosen so that the surface has a minimum charge. Here, we studied the SOI-FET sensor containing 12 nanobelt elements concatenated on a single substrate. Two types of sensing elements of similar design and different widths (0.2 or 3 μm) were located in the chips. The drain-gate measurements of wires with a width of 3 µm are sufficiently reproducible for the entire chip to obtain measurement statistics in air and deionized water. For the pH values from 3 to 12, we found significant changes in source-drain characteristics of nanobelts, which reach the plateau at pH values of 7 and higher. High pH sensitivity (ca. 1500 and 970 mV/pH) was observed in sensors of 3 μm and 0.2 μm in width in the range of pH values from 3 to 7. We found a higher “on” current to “off” current ratio for wide wires. At all studied pH values, Ion/Ioff was up to 4600 and 30,800 for 0.2 and 3 μm wires, respectively. In the scheme on the source-drain current measurements at fixed gate voltages, the highest sensitivity to the pH changes reaches a gate voltage of 13 and 19 V for 0.2 μm and 3 μm sensors, respectively. In summary, the most suitable is 3 μm nanobelt sensing elements for the reliable analysis of biomolecules and measurements at pH over 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.