Background: Mammographic digital imaging is based on X-ray sensors with solid image quality characteristics. These primarily include (a) a response curve that yields high contrast and image latitude, (b) a frequency response given by the Modulation Transfer Function (MTF), which enables small detail imaging and (c) the Normalize Noise Power Spectrum (NNPS) that shows the extent of the noise effect on image clarity. Methods: In this work, a methodological approach is introduced and described for creating digital phantom images based on the measured image quality properties of the sensor. For this purpose, a mathematical phantom, simulating breast tissue and lesions of blood, adipose, muscle, Ca and Ca(50%)-P(50%) was created by considering the corresponding X-ray attenuation coefficients. The simulated irradiation conditions of the phantom used four mammographic spectra assuming exponential attenuation. Published data regarding noise and blur of a commercial RadEye HR CMOS imaging sensor were used as input data for the resulting images. Results: It was found that the Ca and Ca(50%)-P(50%) lesions were visible in all exposure conditions. In addition, the W/Rh spectrum at 28 kVp provided more detailed images than the corresponding Mo/Mo spectrum. Conclusions: The presented methodology can act complementarily to image quality measurements, leading to initial optimization of the X-ray exposure parameters per clinical condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.