BRCA1 is a central component of the DNA damage response mechanism and defects in BRCA1 confer sensitivity to a broad range of DNA damaging agents. BRCA1 is required for homologous recombination and DNA damage-induced S and G 2 /M phase arrest. We show here that BRCA1 is required for ATM-and ATR-dependent phosphorylation of p53, c-Jun, Nbs1 and Chk2 following exposure to ionizing or ultraviolet radiation, respectively, and is also required for ATM phosphorylation of CtIP. In contrast, DNA damageinduced phosphorylation of the histone variant H2AX is independent of BRCA1. We also show that the presence of BRCA1 is dispensable for DNA damageinduced phosphorylation of Rad9, Hus1 and Rad17, and for the relocalization of Rad9 and Hus1. We propose that BRCA1 facilitates the ability of ATM and ATR to phosphorylate downstream substrates that directly in¯uence cell cycle checkpoint arrest and apoptosis, but that BRCA1 is dispensable for the phosphorylation of DNA-associated ATM and ATR substrates.
Women heterozygous for mutations in the breast-cancer susceptibility genes BRCA1 and BRCA2 have a highly elevated risk of developing breast cancer [1]. BRCA1 and BRCA2 encode large proteins with no sequence similarity to one another. Although involvement in DNA repair and transcription has been suggested, it is still not understood how loss of function of these genes leads to breast cancer [2]. Embryonic fibroblasts (MEFs) derived from mice homozygous for a hypomorphic mutation (Brca2(Tr2014)) within the 3' region of exon 11 in Brca2 [3], or a similar mutation (Brca2(Tr)) [4], proliferate poorly in culture and overexpress the tumour suppressor p53 and the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). These MEFs have intact p53-dependent DNA damage G(1)-S [3] [4] and G(2)-M checkpoints [4], but are impaired in DNA double-strand break repair [3] and develop chromosome aberrations [4]. Here, we report that Brca2(Tr2014/Tr2014) MEFs frequently develop micronuclei. These abnormal DNA-containing bodies were formed through both loss of acentric chromosome fragments and by chromosome missegregation, which resulted in aneuploidy. Absence of Brca2 also led to centrosome amplification, which we found associated with the formation of micronuclei. These data suggest a potential mechanism whereby loss of BRCA2 may, within subclones, drive the loss of cell-cycle regulation genes, enabling proliferation and tumourigenesis.
The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis. During female meiosis, X chromosomes can pair and recombine along their entire length; recombination in the PAR is therefore approximately 10x greater in male meiosis compared with female meiosis. A consequence of the presence of the PAR in two copies in males and females is that genes in the region escape the process of X-inactivation. Although the structure and gene content of the human PAR at Xq/Yq is well understood, the mouse PAR, which appears to be of independent evolutionary origin, is poorly characterized. Here we describe a yeast artificial chromosome (YAC) contig covering the distal part of the mouse X chromosome, which we have used to define the pseudoautosomal boundary, that is, the point of divergence of X-specific and X-Y-identical sequences. In addition, we have investigated the size of the mouse PAR by integrating a unique restriction endonuclease recognition site just proximal to the pseudoautosomal boundary by homologous recombination. Restriction digestion of this modified DNA and pulsed field gel electrophoresis reveal that the PAR in these cells is approximately 700 kb. Thus, the mouse PAR, although small in size, has retained essential sex chromosome pairing functions despite its rapid rate of evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.