Therapeutically controlling chronic progression in multiple sclerosis (MS) remains a major challenge. MS progression is defined as a steady loss of parenchymal and functional integrity of the central nervous system (CNS), occurring independent of relapses or focal, magnetic resonance imaging (MRI)-detectable inflammatory lesions. While it clinically surfaces in primary or secondary progressive MS, it is assumed to be an integral component of MS from the very beginning. The exact mechanisms causing progression are still unknown, although evolving evidence suggests that they may substantially differ from those driving relapse biology. To date, progression is assumed to be caused by an interplay of CNS-resident cells and CNS-trapped hematopoietic cells. On the CNS-resident cell side, microglia that are phenotypically and functionally related to cells of the monocyte/macrophage lineage may play a key role. Microglia function is highly transformable. Depending on their molecular signature, microglia can trigger neurotoxic pathways leading to neurodegeneration, or alternatively exert important roles in promoting neuroprotection, downregulation of inflammation, and stimulation of repair. Accordingly, to understand and to possibly alter the role of microglial activation during MS disease progression may provide a unique opportunity for the development of suitable, more effective therapeutics. This review focuses on the current understanding of the role of microglia during disease progression of MS and discusses possible targets for therapeutic intervention.
In multiple sclerosis (MS) persisting disability can derive from acute relapses or, alternatively, from slow and steady deterioration, termed chronic progression. Emerging data suggest that the latter process occurs largely independent from relapse activity or development of new central nervous system (CNS) inflammatory lesions. Pathophysiologically, acute relapses develop as a consequence of de novo CNS infiltration of immune cells, while MS progression appears to be driven by a CNStrapped inflammatory circuit between CNS-established hematopoietic cells as well as CNS-resident cells, such as microglia, astrocytes, and oligodendrocytes. Within the last decades, powerful therapies have been developed to control relapse activity in MS. All of these agents were primarily designed to systemically target the peripheral immune system and/or to prevent CNS infiltration of immune cells. Based on the above described dichotomy of MS pathophysiology, it is understandable that these agents only exert minor effects on progression and that novel targets within the CNS have to be utilized to control MS progression independent of relapse activity. In this regard, one promising strategy may be the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. In this review, we discuss where and to what extent BTK is involved in the immunological and molecular cascades driving MS progression. We furthermore summarize all mechanistic, preclinical, and clinical data on the various BTK inhibitors (evobrutinib, tolebrutinib, fenebrutinib, remibrutinib, orelabrutinib, BIIB091) that are currently in development for treatment of MS, with a particular focus on the potential ability of either drug to control MS progression.Anastasia Geladaris and Sebastian Torke contributed equally and are listed in alphabetical order.
BackgroundMurine models of Alzheimer’s disease (AD) are mainly based on overexpression of pathologic amyloid precursor protein and/or presenilins. Those genes resemble underlying cause of early onset type of AD while about 99 % of all human cases are to be characterized as sporadic, late onset. Appropriate animal models for this type of AD are still missing. We here investigated, if transnasal delivery of A-beta 42 peptides might serve to mimic pathological effects in mice.ResultsA-beta 42 peptides, used for the behavioral study, showed the expected dose-dependent toxicity in neur oblastoma cell line SH-SY5Y and were able to form higher molecular weight species in vitro. Upon delivery into nostrils of wild type mice, protein bands that might represent aggregation products of the exogenously applied human A-beta 42 were only observed in total brain homogenates from mice pre-treated with mannitol. By using TAMRA-labeled A-beta 42 peptides we demonstrated, that transport throughout the brain was achieved already 1 h after administration. FVB/N mice treated with A-beta 42 for 3 days were significantly impaired in the cue-retention condition of the fear conditioning task as compared to controls whereas A-beta-treated C57B6/J mice were impaired in the context condition. In the Morris water maze test, these mice also displayed a delayed learning performance, indicated by significantly longer time to find the platform. Those deficits were also seen for memory performance in the probe trial as measured by number of crossings of the former platform position and time spent in the goal quadrant.ConclusionsExisting AD mouse models are of genetic origin and need prolonged housing time before onset of pathology. Our short-term treatment induced learning and memory deficits via exogenous application of A-beta peptides comparable to those observed for the transgenic animals. With the transnasal A-beta 42 treatment we present an approach to investigate purely A-beta related changes suitable as a model for symptoms of Alzheimer’s dementia (AD). Resulting behavioral deficits were indicative for familial type of Alzheimer’s disease as well as for the late onset variant.Electronic supplementary materialThe online version of this article (doi:10.1186/s12868-016-0280-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.