The African trypanosome survives the immune response of its mammalian host by antigenic variation of its major surface antigen (the Variable Surface Glycoprotein, or VSG). Here we describe the antibody repertoires elicited by different VSGs. We show that the repertoires are highly restricted, directed predominantly to epitopes on the surface of the VSGs. They are also highly discriminatory: minor alterations within these exposed epitopes confer antigenically-distinct properties to these VSGs and elicit different repertoires. We propose that the patterned and repetitive nature of the VSG coat focuses host immunity to a restricted set of immunodominant epitopes per VSG, eliciting a highly stereotyped response, minimizing cross reactivity between different VSGs and facilitating prolonged immune evasion through epitope variation.
Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome, that together with genetic recombination mechanisms allow for essentially unlimited immune escape from the host adaptive immune system. The diversity space of the "VSGome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago. However, recent progress has shown that the VSGs possess significantly more architectural variation than had been appreciated. Here we combine experimental X-ray crystallography with deep-learning structural prediction using Alphafold to produce models of hundreds of VSG proteins, classifying the VSGome into groups based on protein architecture and oligomerization, contextualizing recent bioinformatics clustering schemes, and extensively mapping VSG-diversity space. We demonstrate that in addition to the structural variability and post-translational modifications observed, VSGs are also characterized by variations in oligomerization state and possess inherent flexibility and alternative conformations, lending additional variability to what is exposed to the immune system. Finally, several additional experimental structures and the hundreds of Alphafold predictions confirm that the molecular surfaces of the VSGs remain distinct from variant to variant, supporting the hypothesis that protein surface diversity is central to the process of antigenic variation used by this organism during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.