Hepatitis E virus (HEV) is a 7.2-kb positive-sense, single-stranded RNA virus containing three partially overlapping reading frames, ORF1 to ORF3. All nonstructural proteins required for viral replication are encoded by ORF1 and are transcribed as a single transcript. Computational analysis of the complete ORF1 polyprotein identified a previously uncharacterized region of predicted secondary structure bordered by two disordered regions coinciding partially with a region predicted as a putative cysteine protease. Following successful cloning, expression, and purification of this region, the crystal structure of the identified protein was determined and identified to have considerable structural homology to a fatty acid binding domain. Further analysis of the structure revealed a metal binding site, shown unambiguously to specifically bind zinc via a nonclassical, potentially catalytic zinc-binding motif. Based on the structural homology of the HEV protein with known structures, along with the presence of a catalytic zinc-binding motif, it is possible that the identified protein corresponds to the HEV protease, which could require activation or repression through the binding of a fatty acid. This represents a significant step forward in the characterization and the understanding of the molecular mechanisms of the HEV genome. We present analysis for the first time of this identified nonstructural protein, expanding the knowledge and understanding of the complex mechanisms of HEV biology. IMPORTANCE Hepatitis E virus (HEV) is an emerging virus found predominately in developing countries; it causes an estimated 20 million infections, which result in approximately 57,000 deaths a year. Although it is known that the nonstructural proteins of HEV ORF1 are expressed as a single transcript, there is debate as to whether ORF1 functions as a single polyprotein or if it is processed into separate domains via a viral or endogenous cellular protease. Here we present the first structural and biophysical characterization of an HEV nonstructural protein using a construct that has partially overlapping boundaries with the predicted putative cysteine protease.
In patients with chronic hepatitis C virus (HCV) infection, viral hijacking of the host-cell biosynthetic pathways is associated with altered lipid metabolism, which contributes to disease progression and may influence antiviral response. We investigated the molecular interplay among four key regulators of lipid homeostasis [microRNA (miR)-122, miR-24, miR-223, and proprotein convertase subtilisin/kexin type 9 (PCSK9)] in HCV-infected patients (n = 72) who achieved a treatment-based viral cure after interferon-based therapy with first-generation direct-acting antivirals. Real-time PCR was used to quantify microRNA plasma levels, and ELISA assays were used to determine plasma concentrations of PCSK9. We report that levels of miR-24 and miR-223 significantly increased in patients achieving sustained virologic response (SVR), whereas the levels of miR-122, a liver-specific cofactor for HCV infection, decreased in these patients. PCSK9 concentrations were significantly increased in SVRs, suggesting that PCSK9 may help impede viral infection. The modulatory effect of PCSK9 on HCV infection was also demonstrated in the context of HCV-infected Huh-7.5.1 cells employing recombinant human PCSK9 mutants. Together, these results provide insights into a novel coordinated interplay among three important molecular players in lipid homeostasis — circulating miR-24, miR-223 and PCSK9 — whose regulation is affected by HCV infection and treatment-based viral cure.
Highlights d Genome-wide CRISPR screen identifies host factors regulating HBsAg expression d ZCCHC14 and TENT4A/B stabilize HBsAg expression through RNA tailing d ZCCHC14 forms a complex with TENT4B and the HBV PRE d RG7834 inhibits the enzymatic activity of TENT4A/B within the ZCCHC14-HBV PRE complex
Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection.
A hallmark of chronic hepatitis B virus (CHB) infection is the presence of high circulating levels of non-infectious small lipid HBV surface antigen (HBsAg) vesicles. Although rare, sustained HBsAg loss is the idealized endpoint of any CHB therapy. A novel small molecule RG7834 has been previously reported to inhibit HBsAg expression by targeting terminal nucleotidyltransferase protein 4A and 4B (TENT4A and TENT4B). In this study, we describe a genome-wide CRISPR screen to identify other potential novel host factors required for HBsAg expression and to gain further insights into the mechanism of RG7834. We report more than 60 genes involved in regulating HBsAg and identified novel factors involved in RG7834 activity, including a zinc finger CCHC-type containing 14 (ZCCHC14) protein. We show that ZCCHC14, together with TENT4A/B, stabilizes HBsAg expression through HBV RNA tailing, providing a potential new therapeutic target to achieve functional cure in CHB patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.