Objective To evaluate the effects of Bifidobacterium animalis subsp. lactis HN019 (HN019) on clinical periodontal parameters (plaque accumulation and gingival bleeding), on immunocompetence of gingival tissues [expression of beta-defensin (BD)-3, toll-like receptor 4 (TLR4), cluster of differentiation(CD)-57 and CD-4], and on immunological properties of saliva (IgA levels) in non-surgical periodontal therapy in generalized chronic periodontitis (GCP) patients. Adhesion to buccal epithelial cells (BEC) and the antimicrobial properties of HN019 were also investigated. Materials and methods Thirty patients were recruited and monitored clinically at baseline (before scaling and root planing-SRP) and after 30 and 90 days. Patients were randomly assigned to Test (SRP +Probiotic, n = 15) or Control (SRP+Placebo, n = 15) group. Probiotic lozenges were used for 30 days. Gingival tissues and saliva were immunologically analyzed. The adhesion of HN019 with or without Porphyromonas gingivalis in BEC and its antimicrobial properties were investigated in in vitro assays. Data were statistically analyzed (p<0.05). Results Test group presented lower plaque index (30 days) and lower marginal gingival bleeding (90 days) when compared with Control group. Higher BD-3, TLR4 and CD-4 expressions were
Postbiotics have recently been tentatively defined as bioactive compounds produced during a fermentation process (including microbial cells, cell constituents and metabolites) that supports health and/or wellbeing. Postbiotics are currently available in some infant formulas and fermented foods. We systematically reviewed evidence on postbiotics for preventing and treating common infectious diseases among children younger than 5 years. The PubMed, Embase, SpringerLink, and ScienceDirect databases were searched up to March 2019 for randomized controlled trials (RCTs) comparing postbiotics with placebo or no intervention. Seven RCTs involving 1740 children met the inclusion criteria. For therapeutic trials, supplementation with heat-killed Lactobacillus acidophilus LB reduced the duration of diarrhea (4 RCTs, n = 224, mean difference, MD, −20.31 h, 95% CI −27.06 to −13.57). For preventive trials, the pooled results from two RCTs (n = 537) showed that heat-inactivated L. paracasei CBA L74 versus placebo reduced the risk of diarrhea (relative risk, RR, 0.51, 95% CI 0.37–0.71), pharyngitis (RR 0.31, 95% CI 0.12–0.83) and laryngitis (RR 0.44, 95% CI 0.29–0.67). There is limited evidence to recommend the use of specific postbiotics for treating pediatric diarrhea and preventing common infectious diseases among children. Further studies are necessary to determine the effects of different postbiotics.
Domesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences. A higher abundance of eukaryota (p < 0.05) and viruses (p < 0.05) and lower of archaea (p < 0.05) were found in feral animals when compared with domestic ones. The abundance of genes coding for microbe-produced enzymes involved in the metabolism of carbohydrates was significantly higher (p < 0.05) in feral animals regardless of the geographic origin. Differences in the fecal resistomes between both groups of animals were also noted. The domestic/captive horse microbiomes were enriched in genes conferring resistance to tetracycline, likely reflecting the use of this antibiotic in the management of these animals. Our data showed an impoverishment of the fecal microbiome in domestic horses with diet, antibiotic exposure and hygiene being likely drivers. The results offer a view of the intestinal microbiome of horses and the impact of domestication or captivity, which may uncover novel targets for modulating the microbiome of horses to enhance animal health and well-being.
The Sustainable Development goals for 2020 included reducing all causes associated with infant and perinatal mortality in their priorities. The use of compounds with bioactive properties has been proposed as a therapeutic strategy due to their stimulating effect on the host’s immune system. Additionally, biotherapeutic products such as postbiotics, tentatively defined as compounds produced during a fermentation process that support health and well-being, promote intestinal barrier integrity without posing considerable risks to children’s health. Although this is a concept in development, there are increasing studies in the field of nutrition, chemistry, and health that aim to understand how postbiotics can help prevent different types of infections in priority populations such as minors under the age of five. The present review aims to describe the main mechanisms of action of postbiotics. In addition, it presents the available current evidence regarding the effects of postbiotics against pathogens commonly involved in pediatric infections. Postbiotics may constitute a safe alternative capable of modulating the cellular response and stimulating the host’s humoral response.
Here, we examined whether glyphosate affects the microbiota of herbivores feeding on non-target plants. Colorado potato beetles (Leptinotarsa decemlineata) were reared on potato plants grown in pots containing untreated soil or soil treated with glyphosate-based herbicide (GBH). As per the manufacturer's safety recommendations, the GBH soil treatments were done 2 weeks prior to planting the potatoes. Later, 2-day-old larvae were introduced to the potato plants and then collected in two phases: fourth instar larvae and adults. The larvae's internal microbiota and the adults’ intestinal microbiota were examined by 16S rRNA gene sequencing. The beetles’ microbial composition was affected by the GBH treatment and the differences in microbial composition between the control and insects exposed to GBH were more pronounced in the adults. The GBH treatment increased the relative abundance of Agrobacterium in the larvae and the adults. This effect may be related to the tolerance of some Agrobacterium species to glyphosate or to glyphosate-mediated changes in potato plants. On the other hand, the relative abundances of Enterobacteriaceae, Rhodobacter, Rhizobium and Acidovorax in the adult beetles and Ochrobactrum in the larvae were reduced in GBH treatment. These results demonstrate that glyphosate can impact microbial communities associated with herbivores feeding on non-target crop plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.