PURPOSE. Despite numerous studies associating Visual System Homeobox 1 (VSX1), with posterior polymorphous corneal dystrophy and keratoconus, its role in these diseases is unclear. Here we examine the pathogenicity of VSX1 missense mutations in vitro and in a mouse genetic model. METHODS.Vsx1 transcriptional repressor activity, protein stability, and subcellular localization activity, was examined using luciferase reporter-based assays, western blotting and immunolabeling, respectively, in transfected human embryonic kidney 293T cells. A genetic model for VSX1 p.P247R was generated to investigate pathogenicity of the mutation, in vivo. A wholemount confocal imaging approach on unfixed intact eyes was developed to examine corneal morphology, curvature, and thickness. Immunolabeling and electroretinography was used to examine retinal phenotype. RESULTS.A mutation corresponding to human VSX1 p.P247R led to enhanced transcriptional repressor activity, in vitro. A mouse model for VSX1 p.P247R did not have any observable corneal defect, but did exhibit an abnormal electroretinogram response characterized by a more prominent ON as opposed to OFF panretinal responsiveness. In vitro analysis of additional VSX1 missense mutations showed that they either enhanced repressor activity or did not alter activity. CONCLUSIONS.Our results indicate that although VSX1 sequence variants can alter transcriptional activity, in the context of a mouse genetic model, at least one of these changes does not lead to corneal abnormalities. While we cannot exclude a role for VSX1 as a risk factor for corneal disease, on its own, it does not appear to play a major causative role.
The corneal epithelium is continuously subjected to external stimuli that results in varying degrees of cellular damage. The use of live-cell imaging approaches has facilitated understanding of the cellular and molecular mechanisms underlying the corneal epithelial wound healing process. Here, we describe a live, ex vivo, whole-eye approach using laser scanning confocal microscopy to simultaneously induce and visualize short-term cellular responses following microdamage to the corneal epithelium. Live-cell imaging of corneal cell layers was enabled using the lipophilic fluorescent dyes, SGC5 or FM4-64, which, when injected into the anterior chamber of enucleated eyes, readily penetrated and labelled cell membranes. Necrotic microdamage to a defined region (30 μm x 30 μm) through the central plane of the corneal basal epithelium was induced by continuously scanning for at least one minute using high laser power and was dependent on the presence of lipophilic fluorescent dye. This whole-mount live-cell imaging and microdamage approach was used to examine the behavior of Cx3cr1:GFP-expressing resident corneal stromal macrophages (RCSMs). In undamaged corneas, RCSMs remained stationary, but exhibited a constant extension and retraction of short (~5 μm) semicircular, pseudopodia-like processes reminiscent of what has previously been reported in corneal dendritic cells. Within minutes of microdamage, nearby anterior RCSMs became highly polarized and extended projections towards the damaged region. The extension of the processes plateaued after about 30 minutes and remained stable over the course of 2-3 hours of imaging. Retrospective immunolabeling showed that these responding RCSMs were MHC class II+. This study adds to existing knowledge of immune cell behavior in response to corneal damage and introduces a simple corneal epithelial microdamage and wound healing paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.