Abstract:In this work, the potential of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) imagery to map burned areas was evaluated in two study areas in Greece. For this purpose, we developed an object-based classification scheme to map the fire-disturbed areas using the PALSAR imagery acquired before and shortly after fire events. The advantage of employing an object-based approach was not only the use of the temporal variation of the backscatter coefficient, but also the incorporation in the classification of topological features, such as neighbor objects, and class related features, such as objects classified as burned. The classification scheme resulted in mapping the burned areas with satisfactory results: 0.71 and 0.82 probabilities of detection for the two study areas. Our investigation revealed that the pre-fire vegetation conditions and fire severity should be taken in consideration when mapping burned areas using PALSAR in Mediterranean regions. Overall, findings suggest that the developed scheme could be applied for rapid burned area assessment, especially to areas where cloud cover and fire smoke inhibit accurate mapping of burned areas when optical data are used.
Abstract:The devastating series of fire events that occurred during the summers of 2007 and 2009 in Greece made evident the need for an operational mechanism to map burned areas in an accurate and timely fashion to be developed. In this work, Système pour l'Observation de la Terre (SPOT)-4 HRVIR images are introduced in an object-based classification environment in order to develop a classification procedure for burned area mapping. The development of the procedure was based on two images and then tested for its transferability to other burned areas. Results from the SPOT-4 HRVIR burned area mapping showed very high classification accuracies (~0.86 kappa coefficient), while the object-based classification procedure that was developed proved to be transferable when applied to other study areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.