Objectives: Recognition of infectious origin of haematogenous periprosthetic joint infections (PJI) is crucial. We investigated the primary focus and characteristics of haematogenous PJI. Methods: Consecutive patients who presented with haematogenous PJI between 01/2010 and 01/2018 were retrospectively analysed. Haematogenous PJI was defined by diagnosis of infection !1 month after surgery, acute manifestation after a pain-free period and positive blood or prosthetic-site culture and/or evidence of distant infectious focus consistent with the pathogen. Fisher's exact, Student's t and ManneWhitney U tests were used, as appropriate. Results: A total of 106 episodes of PJI were included, involving 59 knee, 45 hip, one shoulder and one elbow prostheses. The median time from last surgery until haematogenous PJI was 47 months (range, 1e417 months). The pathogen was identified in 105 episodes (99%), including Staphylococcus aureus (n ¼ 43), streptococci (n ¼ 32), enterococci (n ¼ 13), Gram-negative bacteria (n ¼ 9) and coagulase-negative staphylococci (n ¼ 8). Gram-negative bacteria were significantly more often found in hip joints than in knee joints. Blood cultures grew the pathogen in 43 of 70 episodes (61%). The primary infectious focus was identified in 72 episodes (68%) and included infections of intravascular devices or heart valves (22 episodes), skin and soft tissue (16 episodes), the oral cavity (12 episodes), urogenital (12 episodes) or gastrointestinal tract (seven episodes) and other sites (three episodes). Conclusions: In acute PJI manifesting after a pain-free period, the haematogenous infection route should be considered and the primary infectious focus should be actively searched for. The cardiovascular system, skin and soft tissue, oral cavity, urogenital and gastrointestinal tracts were common origins of haematogenous PJI.
Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.