Accumulating evidence suggests that gestational exposure to endocrine disrupting chemicals (EDCs) may interfere with normal brain development and predispose for later dysfunctions. The current study focuses on the exposure impact of mixtures of EDCs that better mimics the real-life situation. We herein describe a mixture of phthalates, pesticides and bisphenol A (mixture N1) detected in pregnant women of the SELMA cohort and associated with language delay in their children. To study the long-term impact of developmental exposure to N1 on brain physiology and behavior we administered this mixture to mice throughout gestation at doses 0×, 0.5×, 10×, 100× and 500× the geometric mean of SELMA mothers’ concentrations, and examined their offspring in adulthood. Mixture N1 exposure increased active coping during swimming stress in both sexes, increased locomotion and reduced social interaction in male progeny. The expression of corticosterone receptors, their regulator Fkbp5, corticotropin releasing hormone and its receptor, oxytocin and its receptor, estrogen receptor beta, serotonin receptors (Htr1a, Htr2a) and glutamate receptor subunit Grin2b, were modified in the limbic system of adult animals, in a region-specific, sexually-dimorphic and experience-dependent manner. Principal component analysis revealed gene clusters associated with the observed behavioral responses, mostly related to the stress axis. This integration of epidemiology-based data with an experimental model increases the evidence that prenatal exposure to EDC mixtures impacts later life brain functions.
The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1
st
trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant
in vitro
model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.
Circadian clocks govern the mammalian physiology in a day/night-dependent manner. The circadian oscillator of peripheral organs is composed of the same elements as the central pacemaker at the suprachiasmatic nucleus (SCN). The interaction between the circadian clock and several cell cycle components has been established in recent years, since many key regulators of cell cycle and growth control were proved to be rhythmically expressed. In particular, the proto-oncogene c-Myc has been documented to be under circadian regulation. Given that it is overexpressed in many malignancies, the study of c-Myc mRNA and c-MYC protein regulation by the circadian clock is of great interest. Thus, the aim of this work was to: (a) analyze in detail the circadian oscillations of c-Myc steady-state mRNA levels and to investigate whether c-MYC protein levels display any oscillating pattern, and (b) ascertain whether circadian time is important for reducing c-MYC levels after drug application. For this purpose, we selected trichostatin A (TSA), since it is known that long (>or=12 h) treatment durations negatively influence the expression levels of c-Myc and short 2 h treatments up regulate the expression of the central oscillator gene Per1 resulting in the resetting of its rhythm. TSA is a specific inhibitor of histone deacetylases (HDACs), and its application results in increased acetylation levels of histone and non-histone proteins. Our results, using the murine neuroblastoma cell line N2A, show that Per1 and c-Myc steady-state mRNA levels oscillate with the same phase. Moreover, a short 2 h TSA treatment causes a phase-dependent decrease of oscillating c-Myc transcript levels only when applied at the trough of its mRNA rhythm, where a general decrease of c-MYC protein levels is also observed. At the peak of its rhythm, no apparent changes can be observed. These experiments demonstrate for the first time that a significant decrease in c-Myc transcript and protein levels can be achieved after a short TSA treatment applied only at specific circadian times. This is also followed by a reduction in the proliferation rate of the cell population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.