Cymodocea nodosa, a typical marine angiosperm species in the Mediterranean Sea, hosts a range of epiphytic algae. Epiphyte abundance varies at different spatial scales, yet epiphyte diversity and community composition are poorly understood. This study explores the epiphytes on C. nodosa from two reference meadows (Thasos, Vrasidas) and one anthropogenically stressed meadow (Nea Karvali) in the northern Aegean Sea (Kavala Gulf, Greece). A nested destructive sampling design at three spatial scales (metres, hundreds of metres, kilometres) and stereoscopic/microscopic observations were used. Light microscopy revealed a total of 19 taxa of macroalgae populating the leaves of C. nodosa. The most commonly encountered taxa with highest cover (%) were Hydrolithon cruciatum and Feldmannia mitchelliae. DNA sequencing (18S rDNA) confirms the presence of a number of dinoflagellate and red algal epiphytes, and this represents the first application of DNA metabarcoding to study the diversity of seagrass epiphytes. Epiphytic communities studied at species/taxon and functional (Ecological Status Groups) levels separated the reference low-stressed meadows from the degraded one, with the functional approach having higher success. The ecological evaluation index classified the studied meadows into different Ecological Status Classes according to anthropogenic stress.
Substratum collected during diving surveys of sublittoral communities off the Greek island of Rhodes (Dodecanese, South-East Aegean) in late 2015 was incubated in the laboratory. Among the emerging macroalgal germlings, there was the second-ever record and isolate of the small benthic multicellular alga Schizocladia ischiensis of the poorly known monotypic Schizocladiophyceae, the sister group of the brown algae (Phaeophyceae). Its nuclear ribosomal small subunit, Rubisco spacer (rbcL, psaA, and psbC sequences (in total 5237 bp)) were similar to those of the only previous isolate of the species from Ischia, western Mediterranean. Our new strain formed branched upright thalli attached to the substratum by an amorphous substance secreted at the bottom of the basal cell. It is possible that S. ischiensis is a common member of the infralittoral and circalittoral communities in the Mediterranean and generally overlooked because of its minute size. Germling emergence appears to represent the method of choice to reveal benthic algae of this small size.
Living specimens of the macroalga Palmaria decipiens were collected from 100 m depth, representing a new confirmed depth record, considerably exceeding the previous record of 42 m depth. Previous deeper collections (below conventional SCUBA depths) have relied on dredge/grab samples or drop camera surveys. Remote techniques cannot conclusively prove that macroalgae are living at these depths, as algae detach from shallower substrata, e.g., through ice scouring, and drift to depths below their growth limit. This, combined with a low rate of decay of macroalgae around Antarctica, requires validation that algal samples from depth have grown in situ. Estimates of macroalgal biomass, energy fluxes, and the potential energy fixation may need adjusting to consider the deeper growing depths particularly with glacial retreat along the Antarctic Peninsula revealing areas of rocky substrata for macroalgal colonisation. The confirmed extension of depth where macroalgae can grow will have implications for assessments of benthic productivity and food webs in Antarctica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.