Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro-and hepato-toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half-life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano-or microgels.
One of the striking characteristics of the tris(alkoxo)-ligated Lindqvist-type polyoxovanadates [VV6O13{(OCH2)3CR}2]2– in highest oxidation state in solution is the ease of their chemical post-functionalization via the R group. On surfaces...
Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels.
One of the striking characteristics of the tris(alkoxo)-ligated Lindqvist-type polyoxovanadates [VV6O13{(OCH2)3CR}2]2– in highest oxidation state in solution is the ease of their chemical post-functionalization via the R group. On surfaces it is their conductivity as a function of individual V(3d) redox states. In both cases, the structural stability of the fully-oxidized dianion is enabled by charge-balancing counterions. In this Article, we explore the charge stability and the charge distibution across the molecular Lindqvist-type hexavanadate structure regarding the R functionality (R = OC2H4N3, CH2N3, and O3C29H36N5) and the different type of countercations (Cat = K+, Li+, NH4+, H+, or Mg2+). We show that the hexavanadate core can accept in its vacant V(3d) orbitals at least four and, in some cases, up to nine additional electrons if the negative charge is offset by the corresponding cation(s), without electron leakage to the covalently attached R groups. Remarkably, the maximum number of accepted electrons strongly depends on the type of cation(s) and is independent on the type of the remote R group exploited herein. The (Cat)n[VV6O13{(OCH2)3CR}2] complexes exibit the structural integrity in all studied charged states. Our study demonstrates the importance of the countercations of multistate polyoxovanadate nanoswitches for the development of multi-charge based molecular memories and/or batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.