We study Thurston equivalence classes of quadratic post-critically finite branched coverings. For these maps, we introduce and study invariant spanning trees. We give a computational procedure for searching for invariant spanning trees. This procedure uses bisets over the fundamental group of a punctured sphere. We also introduce a new combinatorial invariant of Thurston classes -the ivy graph.
The paper deals with cubic 1-variable polynomials whose Julia sets are connected. Fixing a bounded type rotation number, we obtain a slice of such polynomials with the origin being a fixed Siegel point of the specified rotation number. Such slices as parameter spaces were studied by S. Zakeri, so we call them Zakeri slices. We give a model of the central part of a slice (the subset of the slice that can be approximated by hyperbolic polynomials with Jordan curve Julia sets), and a continuous projection from the central part to the model. The projection is defined dynamically and is coherent with the dynamical-analytic parameterization of the Principal Hyperbolic Domain by Petersen and Tan Lei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.