Accurate target-decoy-based false discovery rate (FDR) control of peptide identification from tandem mass-spectrometry data relies on an important but often neglected assumption that incorrect spectrum annotations are equally likely to receive either target or decoy peptides. Here we argue that this assumption is often violated in practice, even by popular methods. Preference can be given to target peptides by biased scoring functions, which result in liberal FDR estimations, or to decoy peptides by correlated spectra, which result in conservative estimations.
Motivation The discrimination ability of score functions to separate correct from incorrect peptide-spectrum-matches in database-searching-based spectrum identification is hindered by many superfluous peaks belonging to unexpected fragmentation ions or by the lacking peaks of anticipated fragmentation ions. Results Here, we present a new method, called BoltzMatch, to learn score functions using a particular stochastic neural networks, called restricted Boltzmann machines, in order to enhance their discrimination ability. BoltzMatch learns chemically explainable patterns among peak pairs in the spectrum data, and it can augment peaks depending on their semantic context or even reconstruct lacking peaks of expected ions during its internal scoring mechanism. As a result, BoltzMatch achieved 50% and 33% more annotations on high- and low-resolution MS2 data than XCorr at a 0.1% false discovery rate in our benchmark; conversely, XCorr yielded the same number of spectrum annotations as BoltzMatch, albeit with 4–6 times more errors. In addition, BoltzMatch alone does yield 14% more annotations than Prosit (which runs with Percolator), and BoltzMatch with Percolator yields 32% more annotations than Prosit at 0.1% FDR level in our benchmark. Availability and implementation BoltzMatch is freely available at: https://github.com/kfattila/BoltzMatch. Contact akerteszfarkas@hse.ru Supporting information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.