Different types of amphiphilic macromolecular structures have been developed within recent decades to prepare the polymer particles considered as drug delivery systems. In the present research the series of amphiphilic block-copolymers containing poly(glutamatic acid) as hydrophilic, and polyphenylalanine as hydrophobic blocks was synthesized and characterized. Molecular weights for homo-and copolymers were determined by gel-permeation chromatography (GPC) and amino acid analysis, respectively. The copolymers obtained were applied for preparation of polymer particles. The specific morphology of prepared polymerosomes was proved using transmission electron microscopy (TEM). The influence on particle size of polymer concentration and pH used for self-assembly, as well as on the length of hydrophobic and hydrophilic blocks of applied copolymers, was studied by dynamic light scattering (DLS). Depending on different experimental conditions, the formation of nanoparticles with sizes from 60 to 350 nm was observed. The surface of polymersomes was modified with model protein (enzyme). No loss in biocatalytic activity was detected. Additionally, the process of encapsulation of model dyes was developed and the possibility of intracellular delivery of the dye-loaded nanoparticles was proved. Thus, the nanoparticles discussed can be considered for the creation of modern drug delivery systems.
Reaction of the palladium(II) and platinum(II) isocyanide complexes cis-[MCl 2 (CNR) 2 ] [M = Pd, R = C 6 H 3 (2,6-Me 2 ) (Xyl), 2-Cl-6-MeC 6 H 3 , cyclohexyl (Cy), t-Bu, C(Me) 2 CH 2 (Me) 3 (1,1,3,3-tetramethylbuth-1-yl abbreviated as tmbu); M = Pt, R = Xyl, 2-Cl-6-MeC 6 H 3 , Cy, t-Bu, and tmbu] with N,N′-diphenylguanidine (DPG) leads to DPG-derived metal-bound deprotonated acyclic diaminocarbene (ADC) species. This reaction occurs via a two-step process, involving the initial coupling of the guanidine with one of the isocyanides and leading to deprotonated monocarbene monochelated species, while the next addition grants the deprotonated bis-carbene bis-chelated metal compounds. DPG behaves as nucleophile, deprotonating base, and chelator. The addition of DPG proceeded with different regioselectivity depending on the metal center and, in a larger extent, on the substituent R in RNCs. The X-ray diffraction studies for the deprotonated mono-and bis-carbene complexes confirmed the regioisomerism of these species and allowed the identification of ADC protolytic forms stabilized in the solid-state. 1D ( 1 H and 13 C{ 1 H}) and 2D ( 1 H, 1 H-NOESY; 1 H, 15 N-HSQC; 1 H, 15 N-HMBC) solution NMR of the obtained systems demonstrated their configuration isomerism accompanied by prototropic tautomerism. Together, the solid-state and solution data provide an insight into the flexible character of ADC species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.